Department of Biomedical Engineering, Duke University, 101 Science Drive, 3361 CIEMAS, Durham, NC 27708, USA.
J Nanobiotechnology. 2013 Jun 28;11:22. doi: 10.1186/1477-3155-11-22.
Acoustophoresis has been utilized successfully in applications including cell trapping, focusing, and purification. One current limitation of acoustophoresis for cell sorting is the reliance on the inherent physical properties of cells (e.g., compressibility, density) instead of selecting cells based upon biologically relevant surface-presenting antigens. Introducing an acoustophoretic cell sorting approach that allows biochemical specificity may overcome this limitation, thus advancing the value of acoustophoresis approaches for both the basic research and clinical fields.
The results presented herein demonstrate the ability for negative acoustic contrast particles (NACPs) to specifically capture and transport positive acoustic contrast particles (PACPs) to the antinode of an ultrasound standing wave. Emulsification and post curing of pre-polymers, either polydimethylsiloxane (PDMS) or polyvinylmethylsiloxane (PVMS), within aqueous surfactant solution results in the formation of stable NACPs that focus onto pressure antinodes. We used either photochemical reactions with biotin-tetrafluorophenyl azide (biotin-TFPA) or end-functionalization of Pluronic F108 surfactant to biofunctionalize NACPs. These biotinylated NACPs bind specifically to streptavidin polystyrene microparticles (as cell surrogates) and transport them to the pressure antinode within an acoustofluidic chip.
To the best of our knowledge, this is the first demonstration of using NACPs as carriers for transport of PACPs in an ultrasound standing wave. By using different silicones (i.e., PDMS, PVMS) and curing chemistries, we demonstrate versatility of silicone materials for NACPs and advance the understanding of useful approaches for preparing NACPs. This bioseparation scheme holds potential for applications requiring rapid, continuous separations such as sorting and analysis of cells and biomolecules.
声泳已成功应用于细胞捕获、聚焦和纯化等领域。目前,声泳在细胞分选方面的一个局限性是依赖于细胞的固有物理特性(如可压缩性、密度),而不是根据生物相关的表面呈现抗原来选择细胞。引入一种允许生化特异性的声泳细胞分选方法可能克服这一限制,从而提高声泳方法在基础研究和临床领域的价值。
本文介绍了负声对比粒子(NACP)能够特异性捕获并将正声对比粒子(PACP)输送到超声驻波节点的能力。在水基表面活性剂溶液中,预聚物(聚二甲基硅氧烷(PDMS)或聚甲基乙烯基硅氧烷(PVMS))的乳化和后固化会导致稳定的 NACP 形成,这些 NACP 聚焦到压力节点上。我们使用生物素-四氟苯叠氮(biotin-TFPA)的光化学反应或 Pluronic F108 表面活性剂的端基功能化来生物功能化 NACP。这些生物素化的 NACP 特异性地与链霉亲和素聚苯乙烯微球(作为细胞替代物)结合,并将其输送到声流控芯片中的压力节点处。
据我们所知,这是首次证明使用 NACP 作为载体在超声驻波中输送 PACP。通过使用不同的硅酮(即 PDMS、PVMS)和固化化学物质,我们展示了硅酮材料在 NACP 中的多功能性,并深入了解了制备 NACP 的有用方法。这种生物分离方案具有应用潜力,例如需要快速、连续分离的细胞和生物分子的分选和分析。