Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain.
J Dairy Sci. 2013 Sep;96(9):6059-69. doi: 10.3168/jds.2013-6824. Epub 2013 Jun 28.
In this study, 2 procedures were used to analyze a data set from a whole-genome scan, one based on linkage analysis information and the other combing linkage disequilibrium and linkage analysis (LDLA), to determine the quantitative trait loci (QTL) influencing milk production traits in sheep. A total of 1,696 animals from 16 half-sib families were genotyped using the OvineSNP50 BeadChip (Illumina Inc., San Diego, CA) and analysis was performed using a daughter design. Moreover, the same data set has been previously investigated through a genome-wide association (GWA) analysis and a comparison of results from the 3 methods has been possible. The linkage analysis and LDLA methodologies yielded different results, although some significantly associated regions were common to both procedures. The linkage analysis detected 3 overlapping genome-wise significant QTL on sheep chromosome (OAR) 2 influencing milk yield, protein yield, and fat yield, whereas 34 genome-wise significant QTL regions were detected using the LDLA approach. The most significant QTL for protein and fat percentages was detected on OAR3, which was reported in a previous GWA analysis. Both the linkage analysis and LDLA identified many other chromosome-wise significant associations across different sheep autosomes. Additional analyses were performed on OAR2 and OAR3 to determine the possible causality of the most significant polymorphisms identified for these genetic effects by the previously reported GWA analysis. For OAR3, the analyses demonstrated additional genetic proof of the causality previously suggested by our group for a single nucleotide polymorphism located in the α-lactalbumin gene (LALBA). In summary, although the results shown here suggest that in commercial dairy populations, the LDLA method exhibits a higher efficiency to map QTL than the simple linkage analysis or linkage disequilibrium methods, we believe that comparing the 3 analysis methods is the best approach to obtain a global picture of all identifiable QTL segregating in the population at both family-based and population-based levels.
在这项研究中,使用了两种程序来分析来自全基因组扫描的数据,一种基于连锁分析信息,另一种结合连锁不平衡和连锁分析(LDLA),以确定影响绵羊产奶性状的数量性状基因座(QTL)。总共对来自 16 个半同胞家系的 1696 只动物进行了基因型分型,使用的是 OvineSNP50 BeadChip(Illumina Inc.,圣地亚哥,CA),并采用了女儿设计进行分析。此外,同一个数据集已经通过全基因组关联(GWA)分析进行了研究,并且可以对 3 种方法的结果进行比较。连锁分析和 LDLA 方法得出了不同的结果,尽管有些显著相关的区域对两种方法都是共有的。连锁分析检测到影响牛奶产量、蛋白质产量和脂肪产量的 3 个重叠的全基因组显著 QTL 位于绵羊染色体(OAR)2 上,而 LDLA 方法检测到 34 个全基因组显著 QTL 区域。对蛋白质和脂肪百分比的最显著 QTL 位于之前的 GWA 分析报告的 OAR3 上。连锁分析和 LDLA 都在不同的绵羊常染色体上识别出许多其他染色体水平显著的关联。还对 OAR2 和 OAR3 进行了额外的分析,以确定之前报道的 GWA 分析确定的这些遗传效应的最显著多态性的可能因果关系。对于 OAR3,分析证明了我们小组之前建议的位于α-乳白蛋白基因(LALBA)中的单核苷酸多态性的因果关系的额外遗传证据。总之,尽管这里显示的结果表明在商业奶牛群体中,LDLA 方法比简单的连锁分析或连锁不平衡方法具有更高的 QTL 定位效率,但我们认为比较 3 种分析方法是获得在基于家族和基于群体的水平上在群体中分离的所有可识别 QTL 的全局图的最佳方法。