Suppr超能文献

利用语义关系权重增强生物医学概念提取

Enhancing biomedical concept extraction using semantic relationship weights.

作者信息

Bleik Said, Xiong Wei, Song Min

机构信息

Department of Information Systems, New Jersey Institute of Technology, Newark, NJ 07102, USA.

出版信息

Int J Data Min Bioinform. 2013;7(3):303-21. doi: 10.1504/ijdmb.2013.053307.

Abstract

Scientific publications are often associated with a set of keywords to describe their content. Automating the process of keyword extraction and assignment could be useful in indexing electronic documents and building digital libraries. In this paper we propose a new approach to biomedical Concept Extraction (CE) using semantic features of concept graphs. We represent full-text documents by graphs and map biomedical terms to predefined ontology concepts. We adopt concept relation weights to improve the ranking process of potential key concepts. We perform both objective and human-based subjective evaluations. The results show that using relation weights significantly improves the performance of CE. The results also highlight the subjectivity of the CE procedure as well as of its evaluation.

摘要

科学出版物通常会关联一组关键词来描述其内容。自动化关键词提取和分配过程在电子文档索引编制和数字图书馆建设中可能会很有用。在本文中,我们提出了一种利用概念图的语义特征进行生物医学概念提取(CE)的新方法。我们用图来表示全文文档,并将生物医学术语映射到预定义的本体概念。我们采用概念关系权重来改进潜在关键概念的排序过程。我们进行了客观评估和基于人的主观评估。结果表明,使用关系权重显著提高了概念提取的性能。结果还突出了概念提取过程及其评估的主观性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验