Sakarya University, Department of Environmental Engineering, Esentepe Campus, Sakarya, Turkey.
Int J Phytoremediation. 2013;15(9):861-76. doi: 10.1080/15226514.2012.760519.
Cucurbita pepo ssp pepo (zucchini) accumulates significant levels of persistent organic pollutants in its roots, followed by unexpectedly high contaminant translocation to the stems. Most other plant species, including the closely related C. pepo ssp ovifera (squash), do not have this ability. To investigate the mechanism of contaminant accumulation, two cultivars each of parental zucchini and squash, as well as previously created first filial (F1) hybrids and F1 backcrosses (BC) of those parental cultivars, were grown under field conditions in a soil contaminated with weathered chlordane (2.29 microg/g) and DDX residues (0.30 microg/g; sum of DDT, DDE, DDD). The parental zucchini had stem-to-soil bioconcentration factors (BCF, contaminant ratio of stem to soil) for chlordane and DDX of 6.23 and 3.10; these values were 2.2 and 3.7 times greater than the squash, respectively. Chlordane and DDX translocation factors, the ratio of contaminant content in the stems to that in the root, were 2.1 and 3.2 times greater for zucchini than for squash. The parental zucchini and squash also differed significantly in chlordane component ratios (relative amounts of trans-nonachlor [TN], cis-chlordane [CC], trans-chlordane [TC]) and enantiomer fractions for the chiral CC and TC. Hybridization of the parental squash and zucchini resulted in significant differences in contaminant uptake. For both the three separate component ratios (CR) and two sets of enantiomer fraction (EF) values, subspecies specific differences in the parental generation became statistically equivalent in the F1 hybrid zucchini and squash. When backcrossed (BC) with the original parental plants, the zucchini and squash F1 BC cultivars reverted to the statistically distinct CR and EF patterns. This pattern of trait segregation upon hybridization suggests either single gene or single locus control for persistent organic pollutant (POP) uptake ability by C. pepo ssp pepo.
南瓜(西葫芦)在其根部积累了大量持久性有机污染物,随后出乎意料地将污染物大量转移到茎部。大多数其他植物物种,包括密切相关的南瓜(南瓜),都没有这种能力。为了研究污染物积累的机制,种植了两种父母西葫芦和南瓜品种,以及之前创建的第一代(F1)杂种和这些父母品种的 F1 回交(BC),在受风化氯丹(2.29μg/g)和 DDX 残留(0.30μg/g;DDT、DDE、DDD 的总和)污染的土壤中进行田间条件下的生长。父母西葫芦的氯丹和 DDX 茎-土生物浓缩因子(BCF,茎与土壤的污染物比率)分别为 6.23 和 3.10;这些值分别比南瓜高 2.2 和 3.7 倍。氯丹和 DDX 转运因子,即茎中污染物含量与根中污染物含量的比率,西葫芦比南瓜高 2.1 和 3.2 倍。父母西葫芦和南瓜的氯丹成分比率(反式-非氯丹 [TN]、顺式-氯丹 [CC]、反式-氯丹 [TC]的相对量)和手性 CC 和 TC 的对映体分数也有显著差异。父母南瓜和西葫芦的杂交导致污染物吸收存在显著差异。对于这三个单独的成分比率(CR)和两组对映体分数(EF)值,在 F1 杂种西葫芦和南瓜中,父母代的亚种特异性差异在统计上变得相等。当与原始亲本植物回交(BC)时,西葫芦和南瓜 F1BC 品种恢复到统计上明显不同的 CR 和 EF 模式。这种杂交后代性状分离的模式表明,C. pepo ssp pepo 对持久性有机污染物(POP)吸收能力的单一基因或单一基因座控制。