Suppr超能文献

相似文献

1
Reaction products and the X-ray structure of AmpDh2, a virulence determinant of Pseudomonas aeruginosa.
J Am Chem Soc. 2013 Jul 17;135(28):10318-10321. doi: 10.1021/ja405464b. Epub 2013 Jul 8.
2
Reactions of the three AmpD enzymes of Pseudomonas aeruginosa.
J Am Chem Soc. 2013 Apr 3;135(13):4950-3. doi: 10.1021/ja400970n. Epub 2013 Mar 21.
4
Orthologous and Paralogous AmpD Peptidoglycan Amidases from Gram-Negative Bacteria.
Microb Drug Resist. 2016 Sep;22(6):470-6. doi: 10.1089/mdr.2016.0083. Epub 2016 Jun 21.
5
Cell-wall remodeling by the zinc-protease AmpDh3 from Pseudomonas aeruginosa.
J Am Chem Soc. 2013 Aug 28;135(34):12604-7. doi: 10.1021/ja407445x. Epub 2013 Aug 15.
7
A type VI secretion system delivers a cell wall amidase to target bacterial competitors.
Mol Microbiol. 2020 Aug;114(2):308-321. doi: 10.1111/mmi.14513. Epub 2020 Apr 22.
8
Exolytic and endolytic turnover of peptidoglycan by lytic transglycosylase Slt of .
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4393-4398. doi: 10.1073/pnas.1801298115. Epub 2018 Apr 9.
9
Structure, Function, and Evolution of the Pseudomonas aeruginosa Lysine Decarboxylase LdcA.
Structure. 2019 Dec 3;27(12):1842-1854.e4. doi: 10.1016/j.str.2019.10.003. Epub 2019 Oct 22.

引用本文的文献

1
Characterization of VldE (Spr1875), a Pneumococcal Two-State l,d-Endopeptidase with a Four-Zinc Cluster in the Active Site.
ACS Catal. 2024 Dec 11;14(24):18786-18798. doi: 10.1021/acscatal.4c05090. eCollection 2024 Dec 20.
2
Investigating novel bacteriophage endolysins as potential antimicrobial agents.
Microbiol Spectr. 2025 Jan 7;13(1):e0117024. doi: 10.1128/spectrum.01170-24. Epub 2024 Nov 21.
3
Identification of a putative cell wall-hydrolyzing amidase involved in sporangiospore maturation in .
J Bacteriol. 2024 Mar 21;206(3):e0045623. doi: 10.1128/jb.00456-23. Epub 2024 Mar 1.
4
Metagenomic analysis of hot spring soil for mining a novel thermostable enzybiotic.
Appl Microbiol Biotechnol. 2024 Jan 22;108(1):163. doi: 10.1007/s00253-023-12979-2.
5
Molecular basis of the final step of cell division in Streptococcus pneumoniae.
Cell Rep. 2023 Jul 25;42(7):112756. doi: 10.1016/j.celrep.2023.112756. Epub 2023 Jul 6.
6
The role of peptidoglycan hydrolases in the formation and toxicity of membrane vesicles.
Microlife. 2022 Jun 30;3:uqac009. doi: 10.1093/femsml/uqac009. eCollection 2022.
7
Integrative structural biology of the penicillin-binding protein-1 from , an essential component of the divisome machinery.
Comput Struct Biotechnol J. 2021 Sep 17;19:5392-5405. doi: 10.1016/j.csbj.2021.09.018. eCollection 2021.
8
Turnover Chemistry and Structural Characterization of the Cj0843c Lytic Transglycosylase of .
Biochemistry. 2021 Apr 13;60(14):1133-1144. doi: 10.1021/acs.biochem.1c00027. Epub 2021 Mar 22.
9
A type VI secretion system delivers a cell wall amidase to target bacterial competitors.
Mol Microbiol. 2020 Aug;114(2):308-321. doi: 10.1111/mmi.14513. Epub 2020 Apr 22.
10
Structural basis of denuded glycan recognition by SPOR domains in bacterial cell division.
Nat Commun. 2019 Dec 5;10(1):5567. doi: 10.1038/s41467-019-13354-4.

本文引用的文献

1
Reactions of the three AmpD enzymes of Pseudomonas aeruginosa.
J Am Chem Soc. 2013 Apr 3;135(13):4950-3. doi: 10.1021/ja400970n. Epub 2013 Mar 21.
2
Reactions of all Escherichia coli lytic transglycosylases with bacterial cell wall.
J Am Chem Soc. 2013 Mar 6;135(9):3311-4. doi: 10.1021/ja309036q. Epub 2013 Feb 21.
3
Bacterial cell-wall recycling.
Ann N Y Acad Sci. 2013 Jan;1277(1):54-75. doi: 10.1111/j.1749-6632.2012.06813.x. Epub 2012 Nov 16.
4
Messenger functions of the bacterial cell wall-derived muropeptides.
Biochemistry. 2012 Apr 10;51(14):2974-90. doi: 10.1021/bi300174x. Epub 2012 Mar 27.
5
Crystal structures of bacterial peptidoglycan amidase AmpD and an unprecedented activation mechanism.
J Biol Chem. 2011 Sep 9;286(36):31714-22. doi: 10.1074/jbc.M111.264366. Epub 2011 Jul 20.
6
A computational evaluation of the mechanism of penicillin-binding protein-catalyzed cross-linking of the bacterial cell wall.
J Am Chem Soc. 2011 Apr 13;133(14):5274-83. doi: 10.1021/ja1074739. Epub 2011 Mar 18.
9
Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2008 Nov;52(11):3922-7. doi: 10.1128/AAC.00341-08. Epub 2008 Sep 8.
10
Benefit of having multiple ampD genes for acquiring beta-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2008 Oct;52(10):3694-700. doi: 10.1128/AAC.00172-08. Epub 2008 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验