Suppr超能文献

铜绿假单胞菌中多个ampD基因在获得β-内酰胺抗性同时不丧失适应性和毒力的益处。

Benefit of having multiple ampD genes for acquiring beta-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa.

作者信息

Moya Bartolomé, Juan Carlos, Albertí Sebastián, Pérez José L, Oliver Antonio

机构信息

Servicio de Microbiología, Hospital Son Dureta, Palma de Mallorca, Spain.

出版信息

Antimicrob Agents Chemother. 2008 Oct;52(10):3694-700. doi: 10.1128/AAC.00172-08. Epub 2008 Jul 21.

Abstract

The inactivation of ampD in Pseudomonas aeruginosa leads to a partially derepressed phenotype, characterized by a moderately high level basal ampC expression that is still further inducible, due to the presence of two additional ampD genes in this species (ampDh2 and ampDh3). The sequential inactivation of the three ampD genes was shown to lead to a stepwise upregulation of ampC expression, reaching full derepression in the triple mutant. To gain insight into the biological role of P. aeruginosa AmpD multiplicity, we determined the effects of the inactivation of the ampD genes on fitness and virulence. We show that, in contrast to what was previously documented for Salmonella spp., the inactivation of ampD in P. aeruginosa does not affect fitness or virulence in a mouse model of systemic infection. This lack of effect was demonstrated to be dependent on the presence of the additional ampD genes (ampDh2 and ampDh3), since the double and the triple ampD mutants completely lost their biological competitiveness and virulence; full ampC derepression and disruption of the AmpD peptidoglycan recycling system itself are both found to cause a major biological cost. Furthermore, among the ampD genes, ampDh3 is found to be the most relevant for virulence in P. aeruginosa. Therefore, as a consequence of the presence of additional ampD genes, partial ampC derepression mediated by ampD inactivation confers a biologically efficient resistance mechanism on P. aeruginosa.

摘要

铜绿假单胞菌中ampD的失活导致部分去阻遏表型,其特征是基础ampC表达水平适度升高,由于该物种中存在另外两个ampD基因(ampDh2和ampDh3),这种表达仍可进一步诱导。三个ampD基因的顺序失活显示会导致ampC表达逐步上调,在三重突变体中达到完全去阻遏。为了深入了解铜绿假单胞菌AmpD多重性的生物学作用,我们确定了ampD基因失活对适应性和毒力的影响。我们发现,与之前关于沙门氏菌属的报道相反,铜绿假单胞菌中ampD的失活在全身感染的小鼠模型中不影响适应性或毒力。这种无影响被证明依赖于另外的ampD基因(ampDh2和ampDh3)的存在,因为双ampD突变体和三重ampD突变体完全丧失了它们的生物学竞争力和毒力;完全的ampC去阻遏和AmpD肽聚糖再循环系统本身的破坏都被发现会导致重大的生物学代价。此外,在ampD基因中,ampDh3被发现与铜绿假单胞菌的毒力最相关。因此,由于存在额外的ampD基因,由ampD失活介导的部分ampC去阻遏赋予了铜绿假单胞菌一种生物学上有效的抗性机制。

相似文献

1
Benefit of having multiple ampD genes for acquiring beta-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2008 Oct;52(10):3694-700. doi: 10.1128/AAC.00172-08. Epub 2008 Jul 21.
2
Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2008 Nov;52(11):3922-7. doi: 10.1128/AAC.00341-08. Epub 2008 Sep 8.
5
Model system to evaluate the effect of ampD mutations on AmpC-mediated beta-lactam resistance.
Antimicrob Agents Chemother. 2006 Jun;50(6):2030-7. doi: 10.1128/AAC.01458-05.
6
Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway?
mBio. 2016 Oct 25;7(5):e01783-16. doi: 10.1128/mBio.01783-16.
7
NagZ inactivation prevents and reverts beta-lactam resistance, driven by AmpD and PBP 4 mutations, in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2010 Sep;54(9):3557-63. doi: 10.1128/AAC.00385-10. Epub 2010 Jun 21.
9
Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2009 Jun;53(6):2274-82. doi: 10.1128/AAC.01617-08. Epub 2009 Mar 9.

引用本文的文献

1
Comprehensive genome catalog analysis of the resistome, virulome and mobilome in the wild rodent gut microbiota.
NPJ Biofilms Microbiomes. 2025 Jun 11;11(1):101. doi: 10.1038/s41522-025-00746-2.
2
The risk of pathogenicity and antibiotic resistance in deep-sea cold seep microorganisms.
mSystems. 2025 Jun 17;10(6):e0157124. doi: 10.1128/msystems.01571-24. Epub 2025 May 21.
3
Transferable AmpCs in : interplay with peptidoglycan recycling, mechanisms of hyperproduction, and virulence implications.
Antimicrob Agents Chemother. 2024 May 2;68(5):e0131523. doi: 10.1128/aac.01315-23. Epub 2024 Mar 22.
4
Filling knowledge gaps related to AmpC-dependent β-lactam resistance in Enterobacter cloacae.
Sci Rep. 2024 Jan 2;14(1):189. doi: 10.1038/s41598-023-50685-1.
5
The balance between antibiotic resistance and fitness/virulence in : an update on basic knowledge and fundamental research.
Front Microbiol. 2023 Sep 28;14:1270999. doi: 10.3389/fmicb.2023.1270999. eCollection 2023.
7
Bacterial Subcellular Architecture, Structural Epistasis, and Antibiotic Resistance.
Biology (Basel). 2023 Apr 23;12(5):640. doi: 10.3390/biology12050640.
9
Role of peptidoglycan recycling enzymes AmpD and AnmK in virulence features.
Front Cell Infect Microbiol. 2023 Jan 13;12:1064053. doi: 10.3389/fcimb.2022.1064053. eCollection 2022.
10
Reversion of Ceftazidime Resistance in under Clinical Setting.
Microorganisms. 2022 Dec 2;10(12):2395. doi: 10.3390/microorganisms10122395.

本文引用的文献

1
Predicting antibiotic resistance.
Nat Rev Microbiol. 2007 Dec;5(12):958-65. doi: 10.1038/nrmicro1796.
2
Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation.
Antimicrob Agents Chemother. 2007 Nov;51(11):4062-70. doi: 10.1128/AAC.00148-07. Epub 2007 Sep 17.
3
Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections.
Antimicrob Agents Chemother. 2007 Oct;51(10):3531-6. doi: 10.1128/AAC.00503-07. Epub 2007 Aug 6.
4
An anhydro-N-acetylmuramyl-L-alanine amidase with broad specificity tethered to the outer membrane of Escherichia coli.
J Bacteriol. 2007 Aug;189(15):5634-41. doi: 10.1128/JB.00446-07. Epub 2007 May 25.
6
Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains.
Antimicrob Agents Chemother. 2005 Nov;49(11):4733-8. doi: 10.1128/AAC.49.11.4733-4738.2005.
8
Molecular characterization of an epidemic clone of panantibiotic-resistant Pseudomonas aeruginosa.
J Clin Microbiol. 2005 Mar;43(3):1198-204. doi: 10.1128/JCM.43.3.1198-1204.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验