Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, D-14195 Berlin, Germany.
J Magn Reson. 2013 Sep;234:1-9. doi: 10.1016/j.jmr.2013.06.002. Epub 2013 Jun 14.
Pulsed multi-frequency electrically detected magnetic resonance (EDMR) at X-, Q- and W-Band (9.7, 34, and 94GHz) was applied to investigate paramagnetic centers in microcrystalline silicon thin-film solar cells under illumination. The EDMR spectra are decomposed into resonances of conduction band tail states (e states) and phosphorus donor states (P states) from the amorphous layer and localized states near the conduction band (CE states) in the microcrystalline layer. The e resonance has a symmetric profile at all three frequencies, whereas the CE resonance reveals an asymmetry especially at W-band. This is suggested to be due to a size distribution of Si crystallites in the microcrystalline material. A gain in spectral resolution for the e and CE resonances at high fields and frequencies demonstrates the advantages of high-field EDMR for investigating devices of disordered Si. The microwave frequency independence of the EDMR spectra indicates that a spin-dependent process independent of thermal spin-polarization is responsible for the EDMR signals observed at X-, Q- and W-band.
脉冲多频电检测磁共振(EDMR)在 X、Q 和 W 波段(9.7、34 和 94GHz)下应用于研究光照下微晶硅薄膜太阳能电池中的顺磁中心。EDMR 光谱分解为非晶层中的导带尾部态(e 态)和磷施主态(P 态)以及微晶晶层中导带附近的局域态(CE 态)的共振。e 共振在所有三个频率下都具有对称的轮廓,而 CE 共振在 W 波段显示出不对称性。这被认为是由于微晶硅材料中硅晶粒的尺寸分布。在高场和高频下,e 和 CE 共振的光谱分辨率提高,证明了高场 EDMR 对研究无序硅器件的优势。EDMR 光谱的微波频率无关性表明,对于在 X、Q 和 W 波段观察到的 EDMR 信号,负责的是与热自旋极化无关的自旋相关过程。