Nuclear/Radiological Engineering and Medical Physics Programs, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405, USA.
Med Phys. 2013 Jul;40(7):073301. doi: 10.1118/1.4808361.
The use of optically tunable gold nanoparticles (GNPs) in conjunction with near-infrared (NIR) laser has emerged as an attractive option for laser-induced thermal therapy (LITT), as it capitalizes on plasmonic heating of GNPs tuned to absorb light strongly in the NIR region. Previously, the authors developed a multisource model to predict the temperature change in a GNP-laden tissue-like medium illuminated by NIR laser and implemented it by a linear superposition (LS) method combining analytic and finite element method (FEM) solutions. While it is intuitive and straightforward, the LS approach might be somewhat cumbersome to implement for realistic LITT cases because it requires separate calculations of the temperature change due to individual GNP heat sources and the laser heat source. Therefore, the current investigation aimed to develop a simpler yet mathematically more elegant and computationally more efficient method solely based on FEM to implement the authors' multisource model.
A multisource FEM model was developed to calculate the full spatiotemporal temperature distribution due to all heat sources (i.e., individual GNPs and the laser heat source) by solving the heat diffusion equation with multiple heat sources using FEM. This model was tested for its validity using two computational phantoms, a two-layer GNP-laden cylindrical phantom and a breast phantom with a GNP-laden microcavity. For comparison, the results for the two phantom cases were also obtained from the LS method.
For the two-layer phantom case, the FEM approach resulted in a maximum temperature increase of 16.4 °C at a depth of 1.35 cm, 2.5 mm below the interface between the two layers, while the LS method produced a maximum temperature increase of 16.7 °C at a depth of 1.3 cm, 2 mm below the interface between the two layers. A comparison of the depth versus temperature changes obtained from the two approaches showed reasonably good agreement within 6%. In the breast phantom case, the LS results show a maximum temperature increase of 16.35 °C at a depth of 2.17 cm, 0.3 mm away from the center of the cavity in the direction closer to the laser. The FEM results show the same characteristics as those obtained via the LS method with a maximum temperature increase of 16.2 °C at a depth of 2.16 cm, 0.4 mm away from the center of the cavity in the direction closer to the laser. The two methods produced good agreement within 2% for the depth versus temperature distributions.
The current multisource FEM model not only reproduced the results from the previous LS model, but also dramatically reduced computation time by 2 orders of magnitude, despite a generally more stringent requirement for computer memory. With further experimental validation, the FEM model can be used to predict the distinct plasmonic heating characteristics expected from NIR laser illumination of tissue-like media filled with GNPs, while offering the capability of handling heterogeneous spatial distribution of GNPs for realistic clinical cases.
将可调谐金纳米粒子(GNPs)与近红外(NIR)激光结合使用,已成为激光诱导热疗(LITT)的一种有吸引力的选择,因为它利用了调谐到吸收 NIR 区域强光的 GNPs 的等离子体加热。此前,作者开发了一种多源模型来预测 NIR 激光照射下负载 GNPs 的组织状介质中的温度变化,并通过结合解析解和有限元方法(FEM)的线性叠加(LS)方法实现了该模型。虽然这种方法直观且直接,但对于实际的 LITT 情况,LS 方法的实现可能有些麻烦,因为它需要分别计算单个 GNP 热源和激光热源引起的温度变化。因此,目前的研究旨在开发一种更简单但数学上更优雅且计算效率更高的方法,仅基于 FEM 即可实现作者的多源模型。
通过使用 FEM 求解带有多个热源的热扩散方程,开发了一种多源 FEM 模型来计算所有热源(即单个 GNPs 和激光热源)引起的全时空温度分布。通过两个计算模型体(一个双层负载 GNPs 的圆柱形模型体和一个带有负载 GNPs 的微腔的乳房模型体)对该模型进行了有效性验证。为了进行比较,还使用 LS 方法获得了这两个模型体案例的结果。
对于双层模型体案例,FEM 方法在两层之间界面下方 2.5 毫米深处导致最大温度升高 16.4°C,而 LS 方法在两层之间界面下方 1.3 厘米深处导致最大温度升高 16.7°C。通过两种方法获得的深度与温度变化的比较在 6%以内具有相当好的一致性。在乳房模型体案例中,LS 结果显示在距离腔体中心 0.3 毫米处,即更靠近激光的方向,深度为 2.17 厘米处的最大温度升高 16.35°C。FEM 结果显示出与 LS 方法相同的特征,在距离腔体中心 0.4 毫米处,即更靠近激光的方向,深度为 2.16 厘米处的最大温度升高 16.2°C。两种方法在深度与温度分布方面的一致性在 2%以内。
当前的多源 FEM 模型不仅复制了之前 LS 模型的结果,而且尽管对计算机内存的要求通常更为严格,但计算时间也大大减少了两个数量级。通过进一步的实验验证,该 FEM 模型可以用于预测在充满 GNPs 的组织状介质中用 NIR 激光照射时预期的独特等离子体加热特性,同时还具有处理实际临床情况下 GNPs 不均匀空间分布的能力。