Epigenetics Programme, the Babraham Institute, Cambridge, United Kingdom.
PLoS One. 2013 Jun 25;8(6):e68846. doi: 10.1371/journal.pone.0068846. Print 2013.
DNA methylation is reprogrammed during early embryogenesis by active and passive mechanisms in advance of the first differentiation event producing the embryonic and extraembryonic lineage cells which contribute to the future embryo proper and to the placenta respectively. Embryonic lineage cells re-acquire a highly methylated genome dependent on the DNA methyltransferases (DNMTs) Dnmt3a and Dnmt3b that are required for de novo methylation. By contrast, extraembryonic lineage cells remain globally hypomethylated but the mechanisms that underlie this hypomethylation remain unknown.
METHODOLOGY/PRINCIPAL FINDINGS: We have employed an inducible system that supports differentiation between these two lineages and recapitulates the DNA methylation asymmetry generated in vivo. We find that in vitro down-regulation of Oct3/4 in ES cells recapitulates the decline in global DNA methylation associated with trophoblast. The de novo DNMTs Dnmt3a2 and Dnmt3b are down-regulated during trophoblast differentiation. Dnmt1, which is responsible for maintenance methylation, is expressed comparably in embryonic and trophoblast lineages, however importantly in trophoblast giant cells Dnmt1fails to be attracted to replication foci, thus allowing loss of DNA methylation while implicating a passive demethylation mechanism. Interestingly, Dnmt1 localization was restored by exogenous Np95/Uhrf1, a Dnmt1 chaperone required for Dnmt1-targeting to replication foci, yet DNA methylation levels remained low. Over-expression of de novo DNMTs also failed to increase DNA methylation in target sequences.
CONCLUSIONS/SIGNIFICANCE: We propose that induced trophoblast cells may have a mechanism to resist genome-wide increases of DNA methylation, thus reinforcing the genome-wide epigenetic distinctions between the embryonic and extraembryonic lineages in the mouse. This resistance may be based on transcription factors or on global differences in chromatin structure.
在第一次分化事件产生胚胎和胚胎外谱系细胞之前,通过主动和被动机制,DNA 甲基化在早期胚胎发生中被重新编程,这些细胞分别为未来的胚胎和胎盘做出贡献。胚胎谱系细胞重新获得高度甲基化的基因组,这依赖于 DNA 甲基转移酶(DNMTs)Dnmt3a 和 Dnmt3b,它们是从头甲基化所必需的。相比之下,胚胎外谱系细胞仍然保持全局低甲基化,但这种低甲基化的机制尚不清楚。
方法/主要发现:我们采用了一种诱导系统,该系统支持这两种谱系之间的分化,并重现了体内产生的 DNA 甲基化不对称性。我们发现,在 ES 细胞中下调 Oct3/4 可重现与滋养层相关的全基因组 DNA 甲基化下降。在滋养层分化过程中,从头甲基转移酶 Dnmt3a2 和 Dnmt3b 下调。负责维持甲基化的 Dnmt1 在胚胎和滋养层谱系中表达相当,但重要的是,在滋养层巨细胞中,Dnmt1 未能吸引复制焦点,从而导致 DNA 甲基化丢失,同时暗示了一种被动去甲基化机制。有趣的是,外源 Np95/Uhrf1 可恢复 Dnmt1 的定位,Np95/Uhrf1 是一种 Dnmt1 靶向复制焦点所必需的 Dnmt1 伴侣,但 DNA 甲基化水平仍然较低。从头甲基转移酶的过度表达也未能增加靶序列中的 DNA 甲基化。
结论/意义:我们提出,诱导的滋养层细胞可能有一种机制来抵抗全基因组 DNA 甲基化的增加,从而强化了小鼠胚胎和胚胎外谱系之间的全基因组表观遗传学差异。这种抗性可能基于转录因子或染色质结构的全局差异。