Gelves Ricardo, Dietrich A, Takors Ralf
Grupo de Biotecnología, Sede de Investigación Universitaria (SIU), Universidad de Antioquia, Carrera 53 N° 61-30, Medellín, Colombia,
Bioprocess Biosyst Eng. 2014 Mar;37(3):365-75. doi: 10.1007/s00449-013-1001-8. Epub 2013 Jul 5.
A combined computational fluid dynamics (CFD) and population balance model (PBM) approach has been applied to simulate hydrodynamics and mass transfer in a 0.18 m(3) gas-liquid stirred bioreactor agitated by (1) a Rushton turbine, and (2) a new pitched blade geometry with rotating cartridges. The operating conditions chosen were motivated by typical settings used for culturing mammalian cells. The effects of turbulence, rotating flow, bubbles breakage and coalescence were simulated using the k-ε, multiple reference frame (MRF), Sliding mesh (SM) and PBM approaches, respectively. Considering the new pitched blade geometry with rotating aeration microspargers, [Formula: see text] mass transfer was estimated to be 34 times higher than the conventional Rushton turbine set-up. Notably, the impeller power consumption was modeled to be about 50 % lower. Independent [Formula: see text] measurements applying the same operational conditions confirmed this finding. Motivated by these simulated and experimental results, the new aeration and stirring device is qualified as a very promising tool especially useful for cell culture applications which are characterized by the challenging problem of achieving relatively high mass transfer conditions while inserting only low stirrer energy.
一种结合计算流体动力学(CFD)和群体平衡模型(PBM)的方法已被用于模拟一个0.18立方米的气液搅拌生物反应器中的流体动力学和传质过程,该反应器由(1)一个 Rushton 涡轮搅拌器和(2)一种带有旋转滤芯的新型斜叶几何结构搅拌器进行搅拌。所选择的操作条件是基于培养哺乳动物细胞的典型设置。分别使用 k-ε 模型、多参考系(MRF)、滑移网格(SM)和 PBM 方法模拟了湍流、旋转流、气泡破碎和聚并的影响。考虑到带有旋转曝气微喷射器的新型斜叶几何结构,传质估计比传统的 Rushton 涡轮设置高34倍。值得注意的是,叶轮功耗模型显示约低50%。在相同操作条件下进行的独立测量证实了这一发现。受这些模拟和实验结果的推动,这种新型曝气和搅拌装置被认为是一种非常有前途的工具,尤其适用于细胞培养应用,这类应用的特点是在仅输入低搅拌能量的情况下,要实现相对较高的传质条件面临挑战性问题。