Suppr超能文献

应用响应面法优化毛细管区带电泳-激光诱导荧光检测同时分离八种多环芳烃。

Use of response surface methodology to optimize the simultaneous separation of eight polycyclic aromatic hydrocarbons by capillary zone electrophoresis with laser-induced fluorescence detection.

机构信息

Chimie ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 75231 Paris cedex 05, France.

出版信息

J Chromatogr A. 2013 Aug 9;1302:181-90. doi: 10.1016/j.chroma.2013.06.027. Epub 2013 Jun 19.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are among the most targeted contaminants by international regulatory institutions. There is thus a need for fast, selective and sensitive analytical methods to quantify these compounds at trace levels in complex samples. This article focuses on the optimization by means of an experimental design of a CE method with laser-induced fluorescence detection for the fast simultaneous separation of 8 heavy PAHs among food and environmental priority pollutants: benzo(a)pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, benzo(k)fluoranthene, and benzo(ghi)perylene. In this method, capillary zone electrophoresis with a mixture of an anionic sulfobutyl ether-β-cyclodextrin (SBE-β-CD) and a neutral methyl-β-cyclodextrin (Me-β-CD) was used to separate PAHs, on the basis of their differential distribution between the two CDs. First, the factors most affecting PAH electrophoretic behavior were identified: SBE-β-CD and Me-β-CD concentrations and percentage of methanol added to the background electrolyte. Then, a response surface strategy using a central composite design was carried out to model the effects of the selected factors on the normalized migration times. To optimize the separation, desirability functions were applied on modeled responses: normalized migration time differences between peak end and peak start of two consecutive peaks, and overall analysis time. From the model, predicted optimum conditions were experimentally validated and full resolution of all 8 PAHs was achieved in less than 7min using a borate buffer composed of 5.3mM SBE-β-CD, 21.5mM Me-β-CD and 10.3% MeOH. This CE separation method was successfully applied to real edible oil analysis.

摘要

多环芳烃(PAHs)是国际监管机构重点关注的污染物之一。因此,需要快速、选择性好且灵敏的分析方法来痕量水平定量分析复杂样品中的这些化合物。本文通过实验设计,重点优化了一种 CE 方法,采用激光诱导荧光检测,可快速同时分离 8 种食品和环境优先污染物中的重多环芳烃:苯并(a)芘、苯并(a)蒽、䓛、苯并(b)荧蒽、二苯并(a,h)蒽、茚并(1,2,3-cd)芘、苯并(k)荧蒽和苯并(ghi)苝。在该方法中,基于两种 CD 之间的差异分布,采用阴离子磺丁基醚-β-环糊精(SBE-β-CD)和中性甲基-β-环糊精(Me-β-CD)混合物的毛细管区带电泳来分离 PAHs。首先,确定了影响 PAH 电泳行为的主要因素:SBE-β-CD 和 Me-β-CD 的浓度以及背景电解质中添加甲醇的百分比。然后,采用中心复合设计进行响应面策略,对所选因素对归一化迁移时间的影响进行建模。为了优化分离,对模型响应应用了可取性函数:两个连续峰的峰末端和峰起始之间的归一化迁移时间差,以及总分析时间。根据模型,预测的最佳条件在实验中得到验证,在硼酸盐缓冲液中使用 5.3mM SBE-β-CD、21.5mM Me-β-CD 和 10.3%MeOH,不到 7 分钟即可实现 8 种 PAHs 的完全分离。该 CE 分离方法成功应用于实际食用油分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验