Ferey Ludivine, Delaunay Nathalie, Rutledge Douglas N, Huertas Alain, Raoul Yann, Gareil Pierre, Vial Jérôme, Rivals Isabelle
Sofiprotéol, 75008 Paris, France; AgroParisTech, UMR INRA 1145 Ingénierie Procédés Aliments, 75005 Paris, France; Chimie ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 75005 Paris, France; ESPCI ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 75005 Paris, France.
Chimie ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 75005 Paris, France; ESPCI ParisTech, Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), 75005 Paris, France; CNRS, UMR 7195, Paris, France; UPMC Université Paris 06, Paris, France.
Anal Chim Acta. 2014 Apr 11;820:195-204. doi: 10.1016/j.aca.2014.02.040. Epub 2014 Feb 27.
Because of their high toxicity, international regulatory institutions recommend monitoring specific polycyclic aromatic hydrocarbons (PAHs) in environmental and food samples. A fast, selective and sensitive method is therefore required for their quantitation in such complex samples. This article deals with the optimization, based on an experimental design strategy, of a cyclodextrin (CD) modified capillary zone electrophoresis separation method for the simultaneous separation of 19 PAHs listed as priority pollutants. First, using a central composite design, the normalized peak-start and peak-end times were modelled as functions of the factors that most affect PAH electrophoretic behavior: the concentrations of the anionic sulfobutylether-β-CD and neutral methyl-β-CD, and the percentage of MeOH in the background electrolyte. Then, to circumvent computational difficulties resulting from the changes in migration order likely to occur while varying experimental conditions, an original approach based on the systematic evaluation of the time intervals between all the possible pairs of peaks was used. Finally, a desirability analysis based on the smallest time interval between two consecutive peaks and on the overall analysis time, allowed us to achieve, for the first time in CE, full resolution of all 19 PAHs in less than 18 min. Using this optimized capillary electrophoresis method, a vegetable oil was successfully analyzed, proving its suitability for real complex sample analysis.
由于其高毒性,国际监管机构建议对环境和食品样品中的特定多环芳烃(PAHs)进行监测。因此,需要一种快速、选择性和灵敏的方法来对这些复杂样品中的PAHs进行定量分析。本文基于实验设计策略,对环糊精(CD)修饰的毛细管区带电泳分离方法进行了优化,以同时分离列为优先污染物的19种PAHs。首先,采用中心复合设计,将归一化的峰起始时间和峰结束时间建模为对PAH电泳行为影响最大的因素的函数:阴离子磺丁基醚-β-CD和中性甲基-β-CD的浓度,以及背景电解质中甲醇的百分比。然后,为了规避在改变实验条件时可能发生的迁移顺序变化所导致的计算困难,采用了一种基于对所有可能的峰对之间的时间间隔进行系统评估的原始方法。最后,基于两个连续峰之间的最小时间间隔和整体分析时间的合意性分析,使我们首次在毛细管电泳中在不到18分钟的时间内实现了所有19种PAHs的完全分离。使用这种优化的毛细管电泳方法,成功分析了一种植物油,证明了其适用于实际复杂样品分析。