Department of Informatics, King's College London, Strand Campus, The Strand, London WC2R 2LS, United Kingdom.
Genomics. 2013 Oct;102(4):223-8. doi: 10.1016/j.ygeno.2013.06.005. Epub 2013 Jul 3.
The study of DNA sequence variation has been transformed by recent advances in DNA sequencing technologies. Determination of the functional consequences of sequence variant alleles offers potential insight as to how genotype may influence phenotype. Even within protein coding regions of the genome, establishing the consequences of variation on gene and protein function is challenging and requires substantial laboratory investigation. However, a series of bioinformatics tools have been developed to predict whether non-synonymous variants are neutral or disease-causing. In this study we evaluate the performance of nine such methods (SIFT, PolyPhen2, SNPs&GO, PhD-SNP, PANTHER, Mutation Assessor, MutPred, Condel and CAROL) and developed CoVEC (Consensus Variant Effect Classification), a tool that integrates the prediction results from four of these methods. We demonstrate that the CoVEC approach outperforms most individual methods and highlights the benefit of combining results from multiple tools.
近年来,DNA 测序技术的进步改变了 DNA 序列变异的研究方式。确定序列变异等位基因的功能后果提供了潜在的见解,说明基因型如何影响表型。即使在基因组的蛋白质编码区域内,确定变异对基因和蛋白质功能的影响也是具有挑战性的,需要进行大量的实验室研究。然而,已经开发了一系列生物信息学工具来预测非同义变异是否是中性的或导致疾病的。在这项研究中,我们评估了九种此类方法(SIFT、PolyPhen2、SNPs&GO、PhD-SNP、PANTHER、Mutation Assessor、MutPred、Condel 和 CAROL)的性能,并开发了 CoVEC(共识变异效应分类),这是一种整合了其中四种方法预测结果的工具。我们证明了 CoVEC 方法的性能优于大多数单个方法,并强调了结合来自多个工具的结果的益处。