Suppr超能文献

人CYP3A4/5中影响FDA批准的COVID-19抗病毒药物药物-酶相互作用的错义单核苷酸多态性的计算机模拟筛选与分析

In-silico screening and analysis of missense SNPs in human CYP3A4/5 affecting drug-enzyme interactions of FDA-approved COVID-19 antiviral drugs.

作者信息

Abdelazim Amro A, Maged Mohamad, Abdelmaksoud Ahmed I, Hassanein Sameh E

机构信息

Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University of Science and Technology, Giza, Egypt.

Applied Biotechnology Program, School of Biotechnology, Nile University, Giza, Egypt.

出版信息

Sci Rep. 2025 Jan 16;15(1):2153. doi: 10.1038/s41598-025-85595-x.

Abstract

Single nucleotide polymorphisms (SNPs) represent the prevailing form of genetic variations observed in the human population. Such variations could alter the encoded enzymes' activities. CYP3A4/5 enzymes are involved in metabolizing drugs, notably antivirals against SARS-CoV-2. In this work, we computationally investigated antiviral-enzyme interactions of CYP3A4/5 genetic variants. We also examined the deleterious impact of 751 missense single nucleotide polymorphisms (SNPs) within the CYP3A4/5 genes. An ensemble of bioinformatics tools, [SIFT, PolyPhen-2, cadd, revel, metaLr, mutation assessor, Panther, SNP&GO, PhD-SNP, SNAP, Meta-SNP, FATHMM, I-Mutant, MuPro, INPS, CONSURF, GPS 5.0, MusiteDeep and NetPhos], identified a total of 94 variants (47 SNPs in CYP3A4, 47 SNPs in CYP3A5) to potentially impact the structural integrity as well as the activity of the CYP3A4/5 enzymes. Molecular docking was done to recognize the structural stability and binding properties of the CYP3A4/5 protein isoforms with 3 FDA-approved antiviral drugs. Our findings indicated that the CYP3A4 gene variants; R418T, I335T and R130P and the CYP3A5 gene variants; I335T, L133P and R130Q are considered the most deleterious missense SNPs. These mutants potentially affect drug-enzyme binding and hence may alter therapeutic response. Cataloguing deleterious SNPs is essential for personalized gene-based pharmacotherapy.

摘要

单核苷酸多态性(SNPs)是人类群体中观察到的主要遗传变异形式。此类变异可能会改变编码酶的活性。CYP3A4/5酶参与药物代谢,尤其是针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的抗病毒药物。在这项研究中,我们通过计算研究了CYP3A4/5基因变异体与抗病毒酶的相互作用。我们还研究了CYP3A4/5基因内751个错义单核苷酸多态性(SNPs)的有害影响。一系列生物信息学工具,[SIFT、PolyPhen-2、cadd、revel、metaLr、突变评估器、Panther、SNP&GO、PhD-SNP、SNAP、Meta-SNP、FATHMM、I-Mutant、MuPro、INPS、CONSURF、GPS 5.0、MusiteDeep和NetPhos],共鉴定出94个变异体(CYP3A4中有47个SNPs,CYP3A5中有47个SNPs)可能会影响CYP3A4/5酶的结构完整性和活性。进行了分子对接以识别CYP3A4/5蛋白异构体与3种美国食品药品监督管理局(FDA)批准的抗病毒药物的结构稳定性和结合特性。我们的研究结果表明,CYP3A4基因变异体;R418T、I335T和R130P以及CYP3A5基因变异体;I335T、L133P和R130Q被认为是最有害的错义SNPs。这些突变体可能会影响药物与酶的结合,从而可能改变治疗反应。编目有害SNPs对于基于基因的个性化药物治疗至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ecc/11739396/521306487833/41598_2025_85595_Fig1_HTML.jpg

相似文献

3
Repurposing FDA-approved drugs for COVID-19: targeting the main protease through multi-phase approach.
Antivir Ther. 2024 Dec;29(6):13596535241305536. doi: 10.1177/13596535241305536.
4
In Silico Prediction and Molecular Docking of SNPs in NRP1 Gene Associated with SARS-COV-2.
Biochem Genet. 2024 Feb;62(1):156-175. doi: 10.1007/s10528-023-10409-6. Epub 2023 Jun 9.
6
Computational analysis of structural and functional evaluation of the deleterious missense variants in the human gene.
J Biomol Struct Dyn. 2023;41(23):14179-14196. doi: 10.1080/07391102.2023.2178509. Epub 2023 Feb 10.
8
Molecular dynamics simulations and bioinformatics' analysis of deleterious missense single nucleotide polymorphisms in Glyoxalase-1 gene.
J Biomol Struct Dyn. 2023;41(23):13707-13717. doi: 10.1080/07391102.2023.2181654. Epub 2023 Feb 22.

本文引用的文献

1
Mutation of a highly conserved amino acid in RPM1 causes leaf yellowing and premature senescence in wheat.
Theor Appl Genet. 2023 Nov 25;136(12):254. doi: 10.1007/s00122-023-04499-4.
2
Impact of highly deleterious non-synonymous polymorphisms on GRIN2A protein's structure and function.
PLoS One. 2023 Jun 15;18(6):e0286917. doi: 10.1371/journal.pone.0286917. eCollection 2023.
4
Mutational screens highlight glycosylation as a modulator of colony-stimulating factor 3 receptor (CSF3R) activity.
J Biol Chem. 2023 Jun;299(6):104755. doi: 10.1016/j.jbc.2023.104755. Epub 2023 Apr 26.
5
Nirmatrelvir and COVID-19: development, pharmacokinetics, clinical efficacy, resistance, relapse, and pharmacoeconomics.
Int J Antimicrob Agents. 2023 Feb;61(2):106708. doi: 10.1016/j.ijantimicag.2022.106708. Epub 2023 Jan 2.
7
Ensembl 2023.
Nucleic Acids Res. 2023 Jan 6;51(D1):D933-D941. doi: 10.1093/nar/gkac958.
8
PubChem 2023 update.
Nucleic Acids Res. 2023 Jan 6;51(D1):D1373-D1380. doi: 10.1093/nar/gkac956.
9
Considerations into pharmacogenomics of COVID-19 pharmacotherapy: Hope, hype and reality.
Pulm Pharmacol Ther. 2022 Dec;77:102172. doi: 10.1016/j.pupt.2022.102172. Epub 2022 Oct 18.
10
Will the Use of Pharmacogenetics Improve Treatment Efficiency in COVID-19?
Pharmaceuticals (Basel). 2022 Jun 13;15(6):739. doi: 10.3390/ph15060739.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验