Laboratorio de Neurobiología de la Memoria, Departamento Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, CP 1428 Buenos Aires, Argentina.
Curr Biol. 2013 Aug 5;23(15):1389-98. doi: 10.1016/j.cub.2013.05.061. Epub 2013 Jul 3.
Due to the complexity and variability of natural environments, the ability to adaptively modify behavior is of fundamental biological importance. Motion vision provides essential cues for guiding critical behaviors such as prey, predator, or mate detection. However, when confronted with the repeated sight of a moving object that turns out to be irrelevant, most animals will learn to ignore it. The neural mechanisms by which moving objects can be ignored are unknown. Although many arthropods exhibit behavioral adaptation to repetitive moving objects, the underlying neural mechanisms have been difficult to study, due to the difficulty of recording activity from the small columnar neurons in peripheral motion detection circuits.
We developed an experimental approach in an arthropod to record the calcium responses of visual neurons in vivo. We show that peripheral columnar neurons that convey visual information into the second optic neuropil persist in responding to the repeated presentation of an innocuous moving object. However, activity in the columnar neurons that convey the visual information from the second to the third optic neuropil is suppressed during high-frequency stimulus repetitions. In accordance with the animal's behavioral changes, the suppression of neural activity is fast but short lasting and restricted to the retina's trained area.
Columnar neurons from the second optic neuropil are likely the main plastic locus responsible for the modifications in animal behavior when confronted with rapidly repeated object motion. Our results demonstrate that visually guided behaviors can be determined by neural plasticity that occurs surprisingly early in the visual pathway.
由于自然环境的复杂性和多变性,自适应地改变行为的能力具有根本的生物学重要性。运动视觉为指导关键行为(如捕食者、猎物或配偶的检测)提供了必要的线索。然而,当面对一个移动的、但实际上无关紧要的物体时,大多数动物会学会忽略它。目前尚不清楚忽略移动物体的神经机制是什么。尽管许多节肢动物表现出对重复移动物体的行为适应,但由于难以记录外周运动检测回路中小柱状神经元的活动,因此很难研究其潜在的神经机制。
我们在节肢动物中开发了一种记录活体视觉神经元钙反应的实验方法。我们发现,将视觉信息传入第二视神经叶的外周柱状神经元在重复呈现无害移动物体时仍会持续反应。然而,在高频刺激重复时,将视觉信息从第二视神经叶传递到第三视神经叶的柱状神经元的活动受到抑制。与动物的行为变化一致,神经活动的抑制是快速但短暂的,并且仅限于受过训练的视网膜区域。
来自第二视神经叶的柱状神经元可能是动物行为改变的主要可塑性部位,当面对快速重复的物体运动时,动物会发生这种改变。我们的研究结果表明,视觉引导的行为可以由视觉通路上早期发生的神经可塑性决定。