Bionanomechanics Lab, Institute of Microelectronics of Madrid, CSIC, Isaac Newton 8 (PTM), Tres Cantos, 28760 Madrid, Spain.
Nanoscale. 2013 Aug 21;5(16):7425-32. doi: 10.1039/c3nr01186k. Epub 2013 Jul 5.
We have investigated the structure of single-stranded (ss) DNA self-assembled monolayers (SAMs) on gold by combining peak force tapping, Kelvin probe and phase contrast atomic force microscopy (AFM) techniques. The adhesion, surface potential and phase shift signals show heterogeneities in the DNA film structure at two levels: microscale and nanoscale; which cannot be clearly discerned in the topography. Firstly, there is multilayer aggregation covering less than 5% of the surface. The DNA multilayers seem to be ordered phases and their existence suggests that DNA end-to-end interaction can play a role in the self-assembly process. Secondly, we find the formation of two phases in the DNA monolayer, which differ both in surface energy and surface potential. We relate the two domains to differences in the packing density and in the ssDNA conformation. The discovered heterogeneities in ssDNA SAMs provide a new scenario in our vision of these relevant films that have direct consequences on their biological, chemical and physical properties.
我们通过结合峰值力轻敲、开尔文探针和相衬原子力显微镜 (AFM) 技术,研究了金上单链 (ss) DNA 自组装单层 (SAM) 的结构。粘附、表面电势和相移信号显示 DNA 薄膜结构在两个层次上存在不均匀性:微观尺度和纳米尺度;而在形貌中无法清晰分辨。首先,有多层聚集,占表面的比例小于 5%。DNA 多层似乎是有序相,它们的存在表明 DNA 端到端相互作用可以在自组装过程中发挥作用。其次,我们发现 DNA 单层中形成了两种相,它们在表面能和表面电势上存在差异。我们将这两个区域与包装密度和 ssDNA 构象的差异联系起来。在 ssDNA SAM 中发现的不均匀性为我们对这些相关薄膜的认识提供了一个新的场景,这对它们的生物、化学和物理性质有直接影响。