Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo Street, Wuhan, 430074, Hubei, People's Republic of China.
Photosynth Res. 2013 Sep;116(1):21-31. doi: 10.1007/s11120-013-9883-5. Epub 2013 Jul 6.
Nitric oxide (NO) has been found to mediate plant responses to heat stress. The objective of this study was to investigate the protective role of NO in the recovery process of photosystem II (PSII) in tall fescue (Festuca arundinacea) against heat stress. Treatment of tall fescue leaves with NO donor sodium nitroprusside significantly improved the overall behavior of PSII probed by the chlorophyll a fluorescence transients, while the inhibition of NO accumulation by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO, a NO scavenger) plus N (G)-nitro-L-arginine-methyl ester (L-NAME, NO synthase inhibitor) dramatically disrupted the operation of PSII. Specifically, under heat stress, the exogenous NO reduced the initial fluorescence (F 0), increased the maximal quantum yield (F V/F M), and disappeared the K-step of 0.3 ms. By the analysis of the JIP-test, the exogenous NO improved the quantum yield of the electron transport flux from Q A to Q B (ET0/ABS), and decreased the trapped excitation flux per reaction center (RC) (TR0/RC), electron transport flux per RC (ET0/RC), and electron flux reducing end electron acceptors per RC (RE0/RC). In addition, the exogenous NO reduced the content of H2O2, O 2 (•-) , and malondialdehyde and electrolyte leakage of tall fescue leaves. These data suggest that exogenous NO could protect plants, increase the amount of activated RC and improve the electron transport from oxygen evolving complex to D1 protein. Moreover, quantitative RT-PCR revealed that, in the presence of hydrogen peroxide, NO induced the gene expression of psbA, psbB, and psbC, which encode proteins belonging to subunits of PSII core reaction center (Psb) complex. These findings indicate that, as an important strategy to protect plants against heat stress, NO could improve the recovery process of PSII by the up regulation of the transcriptions of genes encoding PSII core proteins.
一氧化氮(NO)被发现介导植物对热应激的响应。本研究的目的是探讨 NO 在高羊茅(Festuca arundinacea)对热应激的 PSII 恢复过程中的保护作用。用一氧化氮供体硝普钠处理高羊茅叶片可显著提高叶绿素 a 荧光瞬变探测到的 PSII 的整体性能,而 2-苯-4,4,5,5-四甲基-咪唑啉-1-氧-3-氧化物(PTIO,一种 NO 清除剂)加 N(G)-硝基-L-精氨酸甲酯(L-NAME,NO 合酶抑制剂)抑制 NO 积累则严重破坏了 PSII 的运行。具体来说,在热应激下,外源性 NO 降低了初始荧光(F0),增加了最大量子产量(F V/F M),并消除了 0.3 ms 的 K 步。通过 JIP-test 分析,外源性 NO 提高了从 QA 到 QB 的电子传递通量的量子产量(ET0/ABS),降低了每个反应中心(RC)的俘获激发通量(TR0/RC)、每个 RC 的电子传递通量(ET0/RC)和每个 RC 的电子流还原末端电子受体(RE0/RC)。此外,外源性 NO 降低了高羊茅叶片中 H2O2、O2(•-)和丙二醛的含量以及电解质的渗漏。这些数据表明,外源性 NO 可以保护植物,增加活性 RC 的数量,并改善从氧释放复合物到 D1 蛋白的电子传递。此外,实时定量 RT-PCR 显示,在过氧化氢存在的情况下,NO 诱导编码 PSII 核心反应中心(Psb)复合体亚基的蛋白的 psbA、psbB 和 psbC 基因的表达。这些发现表明,作为一种保护植物免受热应激的重要策略,NO 可以通过上调编码 PSII 核心蛋白的基因的转录来改善 PSII 的恢复过程。