Suppr超能文献

调整预后因素不平衡的设计后的推断。

Inference following designs which adjust for imbalances in prognostic factors.

机构信息

Medicines and Healthcare Products Regulatory Agency, London, UK.

出版信息

Clin Trials. 2013 Aug;10(4):540-51. doi: 10.1177/1740774513493367. Epub 2013 Jul 5.

Abstract

BACKGROUND

When the minimisation method due to Taves is used to balance treatment groups across prognostic factors, a problem arises at the time of analysing the results. Since minimisation is essentially a deterministic method, any statistical test based on the assumption of complete randomisation should not be used in the analysis. Previous articles have shown that analysis of covariance (ANOCOVA) produces valid tests.

METHODS

In this article, these results are extended to trials with more than one prognostic factor and more than two treatments. An alternative design to minimisation which makes use of optimum design theory is also considered, with two choices of biased coin. Simulation is used to study the effect on the power and the coverage probabilities of the usual tests and confidence intervals when these different allocation methods are applied. The results are then illustrated using data from an actual clinical trial.

RESULTS

Simulation shows that when ANOCOVA is used, it is sometimes more powerful with these designs than with minimisation and produces slightly conservative confidence intervals for the treatment mean differences. The increase in power and conservativeness is more pronounced when there are more prognostic factors. The possibility of treatment-covariate interactions is also addressed.

LIMITATIONS

Results are only given when treatment responses are normally distributed.

CONCLUSIONS

Under the simulated situations considered, when a covariate-adaptive design is used, the use of ANOCOVA yields a test which preserves the nominal significance level as compared to the conservativeness of analysis of variance.

摘要

背景

当采用 Taves 的最小化方法来平衡预后因素的治疗组时,在分析结果时会出现问题。由于最小化本质上是一种确定性方法,因此不应在分析中使用基于完全随机化假设的任何统计检验。以前的文章表明,协方差分析 (ANCOVA) 可产生有效的检验。

方法

本文将这些结果扩展到具有多个预后因素和两个以上治疗的试验中。还考虑了一种替代最小化的设计,该设计利用最佳设计理论,并采用两种有偏硬币选择。通过模拟研究了当应用这些不同的分配方法时,对常用检验的功效和覆盖概率的影响以及置信区间。然后使用实际临床试验的数据来说明结果。

结果

模拟表明,当使用 ANCOVA 时,它在这些设计中有时比最小化更有效,并为治疗均值差异产生略微保守的置信区间。当存在更多的预后因素时,功效和保守性的增加更为明显。还讨论了治疗协变量交互作用的可能性。

局限性

仅在治疗反应正态分布时给出结果。

结论

在考虑的模拟情况下,当使用协变量自适应设计时,与方差分析的保守性相比,使用 ANCOVA 可产生保留名义显着性水平的检验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验