Center for Nonlinear Analysis and Department of Mathematical Sciences, Carnegie Mellon University, 4811 Frew Street, Pittsburgh, PA 15213-3890, U.S.A.; Dipartimento di Ingegneria Civile, Ambientale e Meccanica, Universitá degli Studi di Trento, Via Mesiano 77, 38123 Trento, Italy.
Int J Numer Method Biomed Eng. 2013 Dec;29(12):1338-60. doi: 10.1002/cnm.2572. Epub 2013 Jul 8.
In this paper, the authors introduce a hierarchic fractal model to describe bone hereditariness. Indeed, experimental data of stress relaxation or creep functions obtained by compressive/tensile tests have been proved to be fit by power law with real exponent 0 ⩽ β ⩽1. The rheological behavior of the material has therefore been obtained, using the Boltzmann-Volterra superposition principle, in terms of real order integrals and derivatives (fractional-order calculus). It is shown that the power laws describing creep/relaxation of bone tissue may be obtained by introducing a fractal description of bone cross-section, and the Hausdorff dimension of the fractal geometry is then related to the exponent of the power law.
本文作者提出了一种层次分形模型来描述骨骼遗传性。事实上,通过压缩/拉伸试验获得的应力松弛或蠕变函数的实验数据已经被证明可以用实数指数 0 ⩽ β ⩽1 的幂律拟合。因此,根据玻尔兹曼-沃尔泰拉叠加原理,使用实阶积分和导数(分数阶微积分)来获得材料的流变行为。结果表明,通过引入骨骼横截面的分形描述可以得到描述骨骼组织蠕变/松弛的幂律,并且分形几何的豪斯多夫维数与幂律的指数有关。