Suppr超能文献

稻壳回收用于高容量锂电池负极。

Recycling rice husks for high-capacity lithium battery anodes.

机构信息

Graduate School of Energy Environment Water Sustainability, World Class University and KAIST Institute NanoCentury and Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Yuseong Gu, Daejeon 305-701, Korea.

出版信息

Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12229-34. doi: 10.1073/pnas.1305025110. Epub 2013 Jul 8.

Abstract

The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes.

摘要

稻壳是稻谷的外壳,保护内部成分免受昆虫和细菌的侵害。为了实现这一功能,同时通风和保持水分,水稻植物在其外壳中形成了独特的纳米多孔二氧化硅层,这是经过多年的自然进化形成的。尽管全球每年的产量高达数亿吨,但迄今为止,稻壳仅被回收用于低价值的农业项目。为了将稻壳回收用于高价值的应用,我们将二氧化硅转化为硅,并将其用于高容量锂电池的阳极。利用稻壳中存在的互联纳米多孔结构,转化后的硅作为锂电池阳极表现出优异的电化学性能,这表明稻壳可以成为高容量锂电池负极的大量资源。

相似文献

1
Recycling rice husks for high-capacity lithium battery anodes.
Proc Natl Acad Sci U S A. 2013 Jul 23;110(30):12229-34. doi: 10.1073/pnas.1305025110. Epub 2013 Jul 8.
2
Rice husk-originating silicon-graphite composites for advanced lithium ion battery anodes.
Nano Converg. 2017;4(1):24. doi: 10.1186/s40580-017-0118-x. Epub 2017 Sep 19.
4
Construction of SiO/nitrogen-doped carbon superstructures derived from rice husks for boosted lithium storage.
J Colloid Interface Sci. 2022 Jan 15;606(Pt 1):784-792. doi: 10.1016/j.jcis.2021.08.065. Epub 2021 Aug 14.
5
Rice Husk Silica-Derived Nanomaterials for Battery Applications: A Literature Review.
J Agric Food Chem. 2017 Feb 8;65(5):995-1004. doi: 10.1021/acs.jafc.6b04777. Epub 2017 Jan 26.
6
Conversion of rice husk into fermentable sugar and silica using acid-catalyzed ionic liquid pretreatment.
Environ Sci Pollut Res Int. 2021 Aug;28(30):40715-40723. doi: 10.1007/s11356-021-12758-4. Epub 2021 May 4.
9
High-performance lithium battery anodes using silicon nanowires.
Nat Nanotechnol. 2008 Jan;3(1):31-5. doi: 10.1038/nnano.2007.411. Epub 2007 Dec 16.
10
Microsized Porous SiO@C Composites Synthesized through Aluminothermic Reduction from Rice Husks and Used as Anode for Lithium-Ion Batteries.
ACS Appl Mater Interfaces. 2016 Nov 9;8(44):30239-30247. doi: 10.1021/acsami.6b10260. Epub 2016 Oct 27.

引用本文的文献

1
Progress on Separation and Hydrothermal Carbonization of Rice Husk Toward Environmental Applications.
Glob Chall. 2023 Jul 19;7(8):2300112. doi: 10.1002/gch2.202300112. eCollection 2023 Aug.
2
One/Two-Step Contribution to Prepare Hierarchical Porous Carbon Derived from Rice Husk for Supercapacitor Electrode Materials.
ACS Omega. 2023 Jan 24;8(5):5088-5096. doi: 10.1021/acsomega.2c07932. eCollection 2023 Feb 7.
3
Advances of Synthesis Methods for Porous Silicon-Based Anode Materials.
Front Chem. 2022 Apr 25;10:889563. doi: 10.3389/fchem.2022.889563. eCollection 2022.
4
Engineering Bamboo Leaves Into 3D Macroporous Si@C Composites for Stable Lithium-Ion Battery Anodes.
Front Chem. 2022 Apr 7;10:882681. doi: 10.3389/fchem.2022.882681. eCollection 2022.
6
Material Diets for Climate-Neutral Construction.
Environ Sci Technol. 2022 Apr 19;56(8):5213-5223. doi: 10.1021/acs.est.1c05895. Epub 2022 Apr 4.
7
Role of SiO in rice-husk-derived anodes for Li-ion batteries.
Sci Rep. 2022 Jan 19;12(1):975. doi: 10.1038/s41598-022-04979-5.
9
Towards high energy density lithium battery anodes: silicon and lithium.
Chem Sci. 2019 Jun 26;10(30):7132-7148. doi: 10.1039/c9sc01201j. eCollection 2019 Aug 14.
10
Economic and High Performance Phosphorus-Carbon Composite for Lithium and Sodium Storage.
ACS Omega. 2017 Aug 11;2(8):4440-4446. doi: 10.1021/acsomega.7b00540. eCollection 2017 Aug 31.

本文引用的文献

1
Characterization of silicon uptake by rice roots.
New Phytol. 2003 Jun;158(3):431-436. doi: 10.1046/j.1469-8137.2003.00773.x.
2
A yolk-shell design for stabilized and scalable li-ion battery alloy anodes.
Nano Lett. 2012 Jun 13;12(6):3315-21. doi: 10.1021/nl3014814. Epub 2012 May 7.
3
Hierarchical micro/nano porous silicon Li-ion battery anodes.
Chem Commun (Camb). 2012 May 25;48(42):5079-81. doi: 10.1039/c2cc31476b. Epub 2012 Apr 17.
5
Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites.
Angew Chem Int Ed Engl. 2011 Jul 18;50(30):6799-802. doi: 10.1002/anie.201102070. Epub 2011 Jun 6.
6
Reversible storage of lithium in silver-coated three-dimensional macroporous silicon.
Adv Mater. 2010 May 25;22(20):2247-50. doi: 10.1002/adma.200903755.
7
High-performance lithium-ion anodes using a hierarchical bottom-up approach.
Nat Mater. 2010 Apr;9(4):353-8. doi: 10.1038/nmat2725. Epub 2010 Mar 14.
8
Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries.
J Am Chem Soc. 2009 Jul 8;131(26):9239-49. doi: 10.1021/ja8086278.
9
Mercury from chlor-alkali plants: measured concentrations in food product sugar.
Environ Health. 2009 Jan 26;8:2. doi: 10.1186/1476-069X-8-2.
10
Nanomaterials for rechargeable lithium batteries.
Angew Chem Int Ed Engl. 2008;47(16):2930-46. doi: 10.1002/anie.200702505.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验