Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
J Chromatogr A. 2013 Aug 9;1302:1-13. doi: 10.1016/j.chroma.2013.06.032. Epub 2013 Jun 26.
The fundamental assumptions of the van Deemter height equivalent to a theoretical plate (HETP) equation were formulated nearly 60 years ago in its rigorous final mathematical derivation in 1956. The limit of applicability of this classical theory of band broadening in chromatographic columns is discussed on the basis of accurate measurements of diffusion coefficients (in the bulk, in particles, and in column beds), of peak moments in both RPLC and HILIC, on the recent numerical solution of the Navier-Stokes equation and on the results of the simulation of the advection-diffusion transport in the bulk region of computer-generated random packed beds. A result of this discussion is that serious errors are made in the interpretations of the mass transfer mechanism in HILIC and RPLC that are based on the use of the original van Deemter expressions of the longitudinal diffusion coefficient through packed bed, of the mass transfer resistance in the mobile phase, and of the mass transfer resistance in the stationary phase. These errors are discussed and quantitatively assessed. Physically acceptable and relevant expressions are proposed to account for the true mass transfer mechanism in packed columns.
van Deemter 理论塔板等效高度(HETP)方程的基本假设是在 1956 年其严格的最终数学推导中提出的,距今已有近 60 年。本文基于对扩散系数(在本体、颗粒和柱床中)的精确测量、在反相高效液相色谱(RPLC)和氢键作用高效液相色谱(HILIC)中的峰矩、最近对纳维-斯托克斯方程的数值解以及在计算机生成的随机填充床本体区域的对流-扩散输运的模拟结果,讨论了这种经典的色谱柱展宽理论的适用极限。讨论的结果是,基于使用原始的 van Deemter 通过填充床的纵向扩散系数、流动相中的传质阻力和固定相中的传质阻力的表达式来解释 HILIC 和 RPLC 中的传质机理,会产生严重的错误。这些错误进行了讨论和定量评估。提出了物理上可接受和相关的表达式,以解释填充柱中的真实传质机理。