Lomonosov Moscow State University, Leninskie Gori, 119991 Moscow, Russia.
Nat Commun. 2013;4:2128. doi: 10.1038/ncomms3128.
Magnetic field control of light is among the most intriguing methods for modulation of light intensity and polarization on sub-nanosecond timescales. The implementation in nanostructured hybrid materials provides a remarkable increase of magneto-optical effects. However, so far only the enhancement of already known effects has been demonstrated in such materials. Here we postulate a novel magneto-optical phenomenon that originates solely from suitably designed nanostructured metal-dielectric material, the so-called magneto-plasmonic crystal. In this material, an incident light excites coupled plasmonic oscillations and a waveguide mode. An in-plane magnetic field allows excitation of an orthogonally polarized waveguide mode that modifies optical spectrum of the magneto-plasmonic crystal and increases its transparency. The experimentally achieved light intensity modulation reaches 24%. As the effect can potentially exceed 100%, it may have great importance for applied nanophotonics. Further, the effect allows manipulating and exciting waveguide modes by a magnetic field and light of proper polarization.
磁场控制光在亚纳秒时间尺度上调制光强度和偏振的最有趣方法之一。在纳米结构混合材料中的实现提供了磁光效应的显著增强。然而,到目前为止,这种材料中仅展示了对已有效应的增强。在这里,我们假设了一种仅源自于适当设计的金属-电介质纳米结构材料(所谓的磁等离子体晶体)的新型磁光现象。在这种材料中,入射光激发耦合等离子体振荡和波导模式。面内磁场允许激发正交偏振的波导模式,该模式改变磁等离子体晶体的光学光谱并增加其透明度。实验实现的光强度调制达到 24%。由于该效果有可能超过 100%,因此它可能对应用纳米光子学具有重要意义。此外,该效果允许通过磁场和适当偏振的光来操纵和激发波导模式。