Suppr超能文献

组成相似的稻草纤维素超分子结构差异对稻田土壤微生物群的生物质代谢产生影响。

Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota.

作者信息

Ogura Tatsuki, Date Yasuhiro, Kikuchi Jun

机构信息

Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.

出版信息

PLoS One. 2013 Jun 19;8(6):e66919. doi: 10.1371/journal.pone.0066919. Print 2013.

Abstract

Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an "ECOMICS" web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation.

摘要

由于植物细胞壁中的木质纤维素超分子结构坚固且稳定,所以它们抗分解。然而,它们可被土壤微生物群降解和循环利用。基于纤维素超分子结构的差异且无成分变化的情况下,对于复杂微生物群的生物质降解概况了解甚少。在此,我们对在不同碾磨条件下处理的稻草生物质的纤维素超分子结构和组成进行了表征和评估。我们使用了一系列技术,包括固态和溶液态核磁共振(NMR)以及傅里叶变换红外光谱,随后使用热重分析、溶液态NMR和变性梯度凝胶电泳进行热力学和微生物可降解性表征。这些测量数据使用基于网络的“ECOMICS”工具包进行了进一步分析。从结果中我们发现,稻草的物理预处理通过切断重要的分子木质纤维素键改变了木质纤维素超分子结构。从结晶纤维素到无定形纤维素的转变将热降解曲线转移到更低温度。此外,预处理的稻草样品在生物质降解过程中形成了具有不同代谢动态的不同微生物群概况。这是第一份使用ECOMICS工具包全面表征结构、组成、热降解和微生物群概况的报告。通过揭示在不同碾磨条件下处理的生物质的木质纤维素超分子结构之间的差异,我们的分析揭示了除微生物群概况的特征组成外,其在生物质降解过程中的代谢概况和动态是如何形成的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddd8/3686774/1a541192f7a3/pone.0066919.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验