Suppr超能文献

高压下具有介孔结构的合成化学。

Synthetic chemistry with periodic mesostructures at high pressure.

机构信息

Department of Chemistry, Lehigh University , 6 E Packer Avenue, Bethlehem, Pennsylvania 18015, United States.

出版信息

Acc Chem Res. 2013 Nov 19;46(11):2536-44. doi: 10.1021/ar4000373. Epub 2013 Jul 10.

Abstract

Over the last two decades, researchers have studied extensively the synthesis of mesostructured materials, which could be useful for drug delivery, catalytic cracking of petroleum, or reinforced plastics, among other applications. However, until very recently researchers used only temperature as a thermodynamic variable for synthesis, completely neglecting pressure. In this Account, we show how pressure can affect the synthetic chemistry of periodic mesoporous structures with desirable effects. In its simplest application, pressure can crystallize the pore walls of periodic mesoporous silicas, which are difficult to crystallize otherwise. The motivation for the synthesis of periodic mesoporous silica materials (with pore sizes from 2 to 50 nm) 20 years ago was to replace the microporous zeolites (which have pore sizes of <2 nm) in petroleum cracking applications, because the larger pore size of mesoporous materials allows for faster transport of larger molecules. However, these mesoporous materials could not replace zeolite materials because they showed lower hydrothermal stability and lower catalytic activity. This reduced performance has been attributed to the amorphous nature of the mesoporous materials' channel walls. To address this problem, we developed the concept of "nanocasting at high pressure". Through this approach, we produced hitherto-unavailable, periodic mesostructured silicas with crystalline pore walls. In nanocasting, we compress a periodic mesostructured composite (e.g. a periodic mesoporous silica with carbon-filled pores) and subsequently heat it to induce the selective crystallization of one of the two phases. We attain the necessary high pressure for synthesis using piston-cylinder and multianvil apparatuses. Using periodic mesostructured silica/carbon nanocomposites as starting material, we have produced periodic mesoporous coesite and periodic mesoporous quartz. The quartz material is highly stable under harsh hydrothermal conditions (800°C in pure steam), verifying that crystallinity in the channel walls of periodic mesoporous silicas increases their hydrothermal stability. Even without including the carbon phase in the silica pores, we could obtain mesoporous coesite materials. We found similar behavior for periodic mesoporous carbons, which convert into transparent, mesoporous, nanopolycrystalline diamond at high-pressure. We also show that periodic mesoporous materials can serve as precursors for nanocrystals of high-pressure phases. We obtained nearly monodisperse, discrete stishovite nanocrystals from periodic mesoporous silicas and coesite nanocrystals from periodic mesoporous organosilicas. The stishovite nanocrystals disperse in water and form colloidal solutions of individual stishovite nanocrystals. The stishovite nanocrystals could be useful for machining, drilling, and polishing. Overall, the results show that periodic mesoporous materials are suitable starting materials for the synthesis of nanoporous high-pressure phases and nanocrystals of high pressure phases. The substantially enhanced hydrothermal stability seen in periodic mesoporous silicas synthesized at high pressure demonstrates that high pressure can be a useful tool to produce porous materials with improved properties. We expect that synthesis using mesostructures at high pressure can be extended to many other materials beyond silicas and carbons. Presumably, this chemistry can also be extended from mesoporous to microporous and macroporous materials.

摘要

在过去的二十年中,研究人员广泛研究了介孔材料的合成,这些材料可用于药物输送、石油催化裂化或增强塑料等应用。然而,直到最近,研究人员仅将温度作为合成的热力学变量,完全忽略了压力。在本综述中,我们展示了压力如何通过期望的效果影响周期性介孔结构的合成化学。在最简单的应用中,压力可以使周期性介孔硅的孔壁结晶,否则这些孔壁很难结晶。二十年前合成周期性介孔硅材料(孔径为 2 至 50nm)的动机是替代石油裂化应用中的微孔沸石(孔径<2nm),因为介孔材料的较大孔径允许更大的分子更快地传输。然而,这些介孔材料无法替代沸石材料,因为它们的水热稳定性和催化活性较低。这种性能下降归因于介孔材料通道壁的无定形性质。为了解决这个问题,我们开发了“高压纳米铸造”的概念。通过这种方法,我们生产了迄今为止尚未获得的具有结晶孔壁的周期性介孔硅。在纳米铸造中,我们压缩周期性介孔复合材料(例如具有碳填充孔的周期性介孔硅),然后加热以诱导两个相中之一的选择性结晶。我们使用活塞-气缸和多砧设备来获得合成所需的高压。使用周期性介孔硅/碳纳米复合材料作为起始材料,我们已经生产出周期性介孔柯石英和周期性介孔石英。在苛刻的水热条件(纯蒸汽中的 800°C)下,石英材料具有高度的稳定性,这证明了周期性介孔硅通道壁的结晶度提高了它们的水热稳定性。即使不将碳相包含在硅孔中,我们也可以获得介孔柯石英材料。我们发现周期性介孔碳也具有类似的行为,它在高压下转化为透明、介孔、纳米多晶金刚石。我们还表明,周期性介孔材料可以作为高压相纳米晶体的前体。我们从周期性介孔硅中获得了几乎单分散的离散的斯石英纳米晶体,从周期性介孔有机硅中获得了柯石英纳米晶体。斯石英纳米晶体在水中分散并形成单分散斯石英纳米晶体的胶体溶液。斯石英纳米晶体可用于机械加工、钻孔和抛光。总的来说,这些结果表明周期性介孔材料是合成纳米多孔高压相和高压相纳米晶体的合适起始材料。在高压下合成的周期性介孔硅所表现出的显著增强的水热稳定性表明,高压可以成为生产具有改进性能的多孔材料的有用工具。我们预计,高压下使用介孔结构的合成可以扩展到除硅和碳以外的许多其他材料。据推测,这种化学也可以从介孔扩展到微孔和大孔材料。

相似文献

1
Synthetic chemistry with periodic mesostructures at high pressure.
Acc Chem Res. 2013 Nov 19;46(11):2536-44. doi: 10.1021/ar4000373. Epub 2013 Jul 10.
4
Synthesis of stishovite nanocrystals from periodic mesoporous silica.
J Am Chem Soc. 2009 Mar 4;131(8):2764-5. doi: 10.1021/ja8075007.
5
Access to ultralarge-pore ordered mesoporous materials through selection of surfactant/swelling-agent micellar templates.
Acc Chem Res. 2012 Oct 16;45(10):1678-87. doi: 10.1021/ar200343s. Epub 2012 Aug 29.
6
An ordered mesoporous organosilica hybrid material with a crystal-like wall structure.
Nature. 2002 Mar 21;416(6878):304-7. doi: 10.1038/416304a.
8
10
Assembling photoluminescent tri(8-quinolinolato)aluminum into periodic mesoporous organosilicas.
J Colloid Interface Sci. 2013 Dec 1;411:138-44. doi: 10.1016/j.jcis.2013.08.036. Epub 2013 Aug 30.

引用本文的文献

1
Kinetic Modelling of Electroless Nickel-Phosphorus Plating under High Pressure.
ACS Omega. 2020 Mar 20;5(12):6937-6946. doi: 10.1021/acsomega.0c00312. eCollection 2020 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验