Suppr超能文献

了解壁结构对介孔二氧化硅SBA - 15水热稳定性的影响。

Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15.

作者信息

Zhang Fuqiang, Yan Yan, Yang Haifeng, Meng Yan, Yu Chengzhong, Tu Bo, Zhao Dongyuan

机构信息

Department of Chemistry, Molecular Catalysis and Innovative Materials Laboratory, Fudan University, Shanghai 200433, People's Republic of China.

出版信息

J Phys Chem B. 2005 May 12;109(18):8723-32. doi: 10.1021/jp044632+.

Abstract

Mesostructured silica SBA-15 materials with different structural parameters, such as pore size, pore volume, and wall thickness, etc., were prepared by varying the postsynthesis hydrothermal treatment temperature and adding inorganic salts. The hydrothermal stabilities of these materials in steam (100% water vapor) were systematically investigated using a variety of techniques including powder X-ray diffraction, transmission electron microscopy, nitrogen sorption, and (29)Si solid-state NMR. The effect of the pore size, microporosity or mesoporosity, and wall thickness on the stability was discussed. The results show that all of the SBA-15 materials have a good hydrothermal stability under steam of 600 degrees C for at least 24 h. N(2) sorption measurements show that the Brumauer-Emmett-Teller surface area of SBA-15 materials is decreased by about 62% after treatment under steam at 600 degrees C for 24 h. The materials with thicker walls and more micropores show relatively better hydrothermal stability in steam of 600 degrees C. Interestingly, we found that the microporosity of the mesostructured silica SBA-15 is a very important factor for the hydrothermal stability. To the materials with more micropores, the recombination of Si-O-Si bonds during the high-temperature steam treatment may not cause direct destruction to the wall structure. As a result, SBA-15 materials with more micropores show better stability in pure steam of 600 degrees C. Nevertheless, these materials are easily destroyed in steam of 800 degrees C for 6 h. Two methods to effectively improve the hydrothermal stability are introduced here: one is a high-temperature treatment, and another is a carbon-propping thermal treatment. Thermal treatment at 900 degrees C can enhance the polymerization degree of Si-O-Si bonds and effectively improve the hydrothermal stability of these SBA-15 materials in 800 degrees C steam for 12 h. But, this approach will cause very serious shrinkage of the mesopores, resulting in smaller pore diameter and low surface area. A carbon-propping thermal treating method was employed to enhance the polymerization of Si-O-Si bonds and minimize the serious shrinkage of mesopores at the same time. It was demonstrated to be an effective method that can greatly improve the hydrothermal stability of SBA-15 materials in 800 degrees C steam for 12 h. Furthermore, the SBA-15 materials obtained by using the carbon-propping method possess larger pores and higher surface area after the steam treatment at 800 degrees C compared to the materials from the direct thermal treatment method after the steam treatment.

摘要

通过改变合成后水热处理温度并添加无机盐,制备了具有不同结构参数(如孔径、孔体积和壁厚等)的介孔二氧化硅SBA - 15材料。使用包括粉末X射线衍射、透射电子显微镜、氮吸附和(29)Si固体核磁共振等多种技术,系统地研究了这些材料在蒸汽(100%水蒸气)中的水热稳定性。讨论了孔径、微孔率或介孔率以及壁厚对稳定性的影响。结果表明,所有SBA - 15材料在600℃蒸汽下至少24小时都具有良好的水热稳定性。氮吸附测量表明,SBA - 15材料在600℃蒸汽中处理24小时后,其Brumauer - Emmett - Teller表面积降低了约62%。壁厚较厚且微孔较多的材料在600℃蒸汽中表现出相对较好的水热稳定性。有趣的是,我们发现介孔二氧化硅SBA - 15的微孔率是水热稳定性的一个非常重要的因素。对于微孔较多的材料,高温蒸汽处理过程中Si - O - Si键的重组可能不会对壁结构造成直接破坏。因此,微孔较多的SBA - 15材料在600℃纯蒸汽中表现出更好的稳定性。然而,这些材料在800℃蒸汽中处理6小时很容易被破坏。这里介绍了两种有效提高水热稳定性的方法:一种是高温处理,另一种是碳支撑热处理。900℃的热处理可以提高Si - O - Si键的聚合度,并有效提高这些SBA - 15材料在800℃蒸汽中12小时的水热稳定性。但是,这种方法会导致介孔严重收缩,从而使孔径变小且表面积降低。采用碳支撑热处理方法来提高Si - O - Si键的聚合度,同时使介孔的严重收缩最小化。结果表明这是一种有效的方法,可以大大提高SBA - 15材料在800℃蒸汽中12小时的水热稳定性。此外,与直接热处理方法得到的材料在800℃蒸汽处理后的情况相比,采用碳支撑方法得到的SBA - 15材料在800℃蒸汽处理后具有更大的孔径和更高的表面积。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验