Sleight Sean C, Sauro Herbert M
Department of Bioengineering, University of Washington , Seattle, Washington 98195, United States.
ACS Synth Biol. 2013 Sep 20;2(9):506-18. doi: 10.1021/sb4000542. Epub 2013 Jul 22.
The optimization of genetic circuits and metabolic pathways often involves constructing various iterations of the same construct or using directed evolution to achieve the desired function. Alternatively, a method that randomizes individual parts in the same assembly reaction could be used for optimization by allowing for the ability to screen large numbers of individual clones expressing randomized circuits or pathways for optimal function. Here we describe a new assembly method to randomize genetic circuits and metabolic pathways from modular DNA fragments derived from PCR-amplified BioBricks. As a proof-of-principle for this method, we successfully assembled CMY (Cyan-Magenta-Yellow) three-gene circuits using Gibson Assembly that express CFP, RFP, and YFP with independently randomized promoters, ribosome binding sites, transcriptional terminators, and all parts randomized simultaneously. Sequencing results from 24 CMY circuits with various parts randomized show that 20/24 circuits are distinct and expression varies over a 200-fold range above background levels. We then adapted this method to randomize the same parts with enzyme coding sequences from the lycopene biosynthesis pathway instead of fluorescent proteins, designed to independently express each enzyme in the pathway from a different promoter. Lycopene production is improved using this randomization method by about 30% relative to the highest polycistronic-expressing pathway. These results demonstrate the potential of generating nearly 20,000 unique circuit or pathway combinations when three parts are permutated at each position in a three-gene circuit or pathway, and the methodology can likely be adapted to other circuits and pathways to maximize products of interest.
遗传电路和代谢途径的优化通常涉及构建同一构建体的各种迭代版本,或使用定向进化来实现所需功能。或者,可以采用一种在同一组装反应中使各个部分随机化的方法进行优化,即能够筛选大量表达随机化电路或途径的单个克隆,以获得最佳功能。在此,我们描述了一种新的组装方法,可从PCR扩增的生物砖衍生的模块化DNA片段中随机化遗传电路和代谢途径。作为该方法的原理验证,我们使用吉布森组装法成功组装了CMY(青-品红-黄)三基因电路,该电路表达CFP、RFP和YFP,其启动子、核糖体结合位点、转录终止子均独立随机化,且所有部分同时随机化。对24个各部分随机化的CMY电路进行测序的结果表明,24个电路中有20个是不同的,其表达水平在背景水平之上有200倍的变化范围。然后,我们采用该方法,用番茄红素生物合成途径的酶编码序列而非荧光蛋白对相同部分进行随机化,设计使其能从不同启动子独立表达途径中的每种酶。相对于最高表达多顺反子的途径,使用这种随机化方法可使番茄红素产量提高约30%。这些结果表明,当在三基因电路或途径的每个位置对三个部分进行排列时,有可能产生近20,000种独特的电路或途径组合,并且该方法可能适用于其他电路和途径,以最大化感兴趣的产物。