Jiangsu Laboratory of Advanced Functional Material, Department of Chemistry, Changshu Institute of Technology, Changshu 215500, China.
Nanoscale. 2013 Aug 21;5(16):7613-21. doi: 10.1039/c3nr00951c. Epub 2013 Jul 11.
Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(II), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g(-1) at 0.1 A g(-1)), good rate capability (65.8 F g(-1) at 40 A g(-1)), and excellent cycling stability (retention 119.3% after 10,000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles.
在这里,我们首次采用二氯化锡(SnCl2)和乙二胺(ETA)有机溶剂通过超声辅助法合成了 SnO。ETA 的中等碱性和超声在 SnO 的合成中起着非常重要的作用。在 ETA-Sn(II) 中间产物水解后,所合成的 SnO 纳米团簇在水热处理中经历了组装、融合和优先向微板生长。所合成的 SnO 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨率透射电子显微镜(HRTEM)、紫外-可见吸收光谱(UV-vis)和 X 射线衍射(XRD)进行了表征。为了探索其在储能方面的潜在应用,将 SnO 制成超级电容器电极,并通过循环伏安法(CV)、电化学阻抗谱(EIS)和恒电流充放电测量进行了表征。所合成的 SnO 表现出显著的赝电容活性,包括高比电容(在 0.1 A g(-1)时为 208.9 F g(-1))、良好的倍率性能(在 40 A g(-1)时为 65.8 F g(-1))和出色的循环稳定性(在 10000 次循环后保持 119.3%),适用于超级电容器。通过使用等效电路拟合 EIS 观察了具有各种晶体形态的 SnO 的电容行为。SnO 的新型合成途径是一种方便且有潜力的大规模生产微板的方法,有望应用于其他金属氧化物纳米粒子的合成。