Mu Bin, Zhang Wenbo, Shao Shijun, Wang Aiqin
Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, PR China.
Phys Chem Chem Phys. 2014 May 7;16(17):7872-80. doi: 10.1039/c4cp00280f.
The graphene-MnO2-polyaniline (rGO-MnO2-PAn) ternary composites were prepared via in situ chemical oxidative polymerization of polyaniline on the MnO2 decorated graphene sheets. The graphene sheets were treated with KMnO4 in a water-ethylene glycol system using the hydrothermal method to complete the loading of MnO2 on the graphene sheets, while the graphene oxide (GO) sheets were hydrothermally reduced to reduced graphene oxide (rGO). The glycol was introduced as a reductant to react with MnO4(-), and GO was protected from consumption in the process of deposition of MnO2. The structures and morphologies of the resulting ternary composites are characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The electrochemical properties of the composites as potential electrode materials for supercapacitors were investigated using different electrochemical techniques including cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS). The specific capacitance of a rGO-MnO2-PAn composite electrode was 395 F g(-1) at 10 mA cm(-2) in 1 M H2SO4 solution. The composites displayed good cycle stability retaining 92% of their original specific capacitance after 1200 cycles by continuous cyclic voltammetric scans at 100 mV s(-1).
通过在MnO₂修饰的石墨烯片上原位化学氧化聚合聚苯胺制备了石墨烯-MnO₂-聚苯胺(rGO-MnO₂-PAn)三元复合材料。采用水热法在水-乙二醇体系中用KMnO₄处理石墨烯片,以完成MnO₂在石墨烯片上的负载,同时将氧化石墨烯(GO)片水热还原为还原氧化石墨烯(rGO)。引入乙二醇作为还原剂与MnO₄⁻反应,在MnO₂沉积过程中保护GO不被消耗。使用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和X射线光电子能谱(XPS)对所得三元复合材料的结构和形貌进行了表征。使用包括循环伏安法(CV)、恒电流充放电和电化学阻抗谱(EIS)在内的不同电化学技术研究了该复合材料作为超级电容器潜在电极材料的电化学性能。在1 M H₂SO₄溶液中,rGO-MnO₂-PAn复合电极在10 mA cm⁻²时的比电容为395 F g⁻¹。通过在100 mV s⁻¹下连续循环伏安扫描,该复合材料在1200次循环后显示出良好的循环稳定性,保留了其原始比电容的92%。