Suppr超能文献

基于 ERP 的脑机接口传感器选择机制的比较。

Comparison of sensor selection mechanisms for an ERP-based brain-computer interface.

机构信息

Robotics Innovation Center, German Research Center for Artificial Intelligence, Bremen, Germany.

出版信息

PLoS One. 2013 Jul 2;8(7):e67543. doi: 10.1371/journal.pone.0067543. Print 2013.

Abstract

A major barrier for a broad applicability of brain-computer interfaces (BCIs) based on electroencephalography (EEG) is the large number of EEG sensor electrodes typically used. The necessity for this results from the fact that the relevant information for the BCI is often spread over the scalp in complex patterns that differ depending on subjects and application scenarios. Recently, a number of methods have been proposed to determine an individual optimal sensor selection. These methods have, however, rarely been compared against each other or against any type of baseline. In this paper, we review several selection approaches and propose one additional selection criterion based on the evaluation of the performance of a BCI system using a reduced set of sensors. We evaluate the methods in the context of a passive BCI system that is designed to detect a P300 event-related potential and compare the performance of the methods against randomly generated sensor constellations. For a realistic estimation of the reduced system's performance we transfer sensor constellations found on one experimental session to a different session for evaluation. We identified notable (and unanticipated) differences among the methods and could demonstrate that the best method in our setup is able to reduce the required number of sensors considerably. Though our application focuses on EEG data, all presented algorithms and evaluation schemes can be transferred to any binary classification task on sensor arrays.

摘要

脑机接口(BCI)在基于脑电图(EEG)的应用中,一个主要的障碍是通常使用大量的 EEG 传感器电极。这是必要的,因为对于 BCI 来说,相关信息通常在头皮上以复杂的模式传播,这些模式因受试者和应用场景而异。最近,已经提出了许多方法来确定个体的最佳传感器选择。然而,这些方法很少相互比较,也很少与任何类型的基线进行比较。在本文中,我们回顾了几种选择方法,并根据使用减少的传感器集评估 BCI 系统性能的情况,提出了一种额外的选择标准。我们在一个旨在检测 P300 事件相关电位的被动 BCI 系统的背景下评估这些方法,并将这些方法的性能与随机生成的传感器组合进行比较。为了对简化系统的性能进行现实的估计,我们将在一个实验会话中找到的传感器组合转移到不同的会话进行评估。我们发现这些方法之间存在显著(且出乎意料)的差异,并能够证明我们的设置中最好的方法能够大大减少所需的传感器数量。尽管我们的应用重点是 EEG 数据,但所有呈现的算法和评估方案都可以转移到传感器阵列上的任何二进制分类任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/918d/3699630/3f814548b825/pone.0067543.g001.jpg

相似文献

1
Comparison of sensor selection mechanisms for an ERP-based brain-computer interface.
PLoS One. 2013 Jul 2;8(7):e67543. doi: 10.1371/journal.pone.0067543. Print 2013.
2
EEG sensor selection by sparse spatial filtering in P300 speller brain-computer interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5379-82. doi: 10.1109/IEMBS.2010.5626485.
3
A comparison of recording modalities of P300 event-related potentials (ERP) for brain-computer interface (BCI) paradigm.
Neurophysiol Clin. 2013 Oct;43(4):217-27. doi: 10.1016/j.neucli.2013.06.002. Epub 2013 Jul 18.
4
A robust sensor-selection method for P300 brain-computer interfaces.
J Neural Eng. 2011 Feb;8(1):016001. doi: 10.1088/1741-2560/8/1/016001. Epub 2011 Jan 19.
5
Impact of spatial filters during sensor selection in a visual P300 brain-computer interface.
Brain Topogr. 2012 Jan;25(1):55-63. doi: 10.1007/s10548-011-0193-y. Epub 2011 Jul 10.
6
Regularized Group Sparse Discriminant Analysis for P300-Based Brain-Computer Interface.
Int J Neural Syst. 2019 Aug;29(6):1950002. doi: 10.1142/S0129065719500023. Epub 2019 Jan 14.
7
A comparison of subject-dependent and subject-independent channel selection strategies for single-trial P300 brain computer interfaces.
Med Biol Eng Comput. 2019 Dec;57(12):2705-2715. doi: 10.1007/s11517-019-02065-z. Epub 2019 Nov 14.
8
[A review on electroencephalogram based channel selection].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Apr 25;41(2):398-405. doi: 10.7507/1001-5515.202308034.
9
Influence of P300 latency jitter on event related potential-based brain-computer interface performance.
J Neural Eng. 2014 Jun;11(3):035008. doi: 10.1088/1741-2560/11/3/035008. Epub 2014 May 19.
10
EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
J Neural Eng. 2018 Oct;15(5):056013. doi: 10.1088/1741-2552/aace8c. Epub 2018 Jun 22.

引用本文的文献

1
Automatic subject-specific spatiotemporal feature selection for subject-independent affective BCI.
PLoS One. 2021 Aug 26;16(8):e0253383. doi: 10.1371/journal.pone.0253383. eCollection 2021.
3
Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces.
Front Hum Neurosci. 2018 Jun 28;12:246. doi: 10.3389/fnhum.2018.00246. eCollection 2018.
4
Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns.
Front Neurosci. 2017 Oct 6;11:550. doi: 10.3389/fnins.2017.00550. eCollection 2017.
5
How to evaluate an agent's behavior to infrequent events?-Reliable performance estimation insensitive to class distribution.
Front Comput Neurosci. 2014 Apr 10;8:43. doi: 10.3389/fncom.2014.00043. eCollection 2014.
6
Multimodal movement prediction - towards an individual assistance of patients.
PLoS One. 2014 Jan 8;9(1):e85060. doi: 10.1371/journal.pone.0085060. eCollection 2014.
7
pySPACE-a signal processing and classification environment in Python.
Front Neuroinform. 2013 Dec 24;7:40. doi: 10.3389/fninf.2013.00040. eCollection 2013.

本文引用的文献

1
Quality assessment of electroencephalography obtained from a "dry electrode" system.
J Neurosci Methods. 2012 Jul 15;208(2):134-7. doi: 10.1016/j.jneumeth.2012.05.011. Epub 2012 May 22.
2
Comparison of dry and gel based electrodes for p300 brain-computer interfaces.
Front Neurosci. 2012 May 7;6:60. doi: 10.3389/fnins.2012.00060. eCollection 2012.
3
A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects: a multi-session study.
IEEE Trans Neural Syst Rehabil Eng. 2011 Dec;19(6):617-27. doi: 10.1109/TNSRE.2011.2168542. Epub 2011 Oct 6.
4
Impact of spatial filters during sensor selection in a visual P300 brain-computer interface.
Brain Topogr. 2012 Jan;25(1):55-63. doi: 10.1007/s10548-011-0193-y. Epub 2011 Jul 10.
5
Towards passive brain-computer interfaces: applying brain-computer interface technology to human-machine systems in general.
J Neural Eng. 2011 Apr;8(2):025005. doi: 10.1088/1741-2560/8/2/025005. Epub 2011 Mar 24.
6
Optimizing the channel selection and classification accuracy in EEG-based BCI.
IEEE Trans Biomed Eng. 2011 Jun;58(6):1865-73. doi: 10.1109/TBME.2011.2131142. Epub 2011 Mar 22.
7
EEG sensor selection by sparse spatial filtering in P300 speller brain-computer interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5379-82. doi: 10.1109/IEMBS.2010.5626485.
8
On optimal channel configurations for SMR-based brain-computer interfaces.
Brain Topogr. 2010 Jun;23(2):186-93. doi: 10.1007/s10548-010-0135-0. Epub 2010 Feb 17.
9
Asynchronous non-invasive brain-actuated control of an intelligent wheelchair.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3361-4. doi: 10.1109/IEMBS.2009.5332828.
10
xDAWN algorithm to enhance evoked potentials: application to brain-computer interface.
IEEE Trans Biomed Eng. 2009 Aug;56(8):2035-43. doi: 10.1109/TBME.2009.2012869. Epub 2009 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验