Suppr超能文献

用于增强诱发电位的xDAWN算法:在脑机接口中的应用。

xDAWN algorithm to enhance evoked potentials: application to brain-computer interface.

作者信息

Rivet Bertrand, Souloumiac Antoine, Attina Virginie, Gibert Guillaume

机构信息

GIPSA Laboratory, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR), Grenoble, France.

出版信息

IEEE Trans Biomed Eng. 2009 Aug;56(8):2035-43. doi: 10.1109/TBME.2009.2012869. Epub 2009 Jan 23.

Abstract

A brain-computer interface (BCI) is a communication system that allows to control a computer or any other device thanks to the brain activity. The BCI described in this paper is based on the P300 speller BCI paradigm introduced by Farwell and Donchin . An unsupervised algorithm is proposed to enhance P300 evoked potentials by estimating spatial filters; the raw EEG signals are then projected into the estimated signal subspace. Data recorded on three subjects were used to evaluate the proposed method. The results, which are presented using a Bayesian linear discriminant analysis classifier , show that the proposed method is efficient and accurate.

摘要

脑机接口(BCI)是一种通信系统,它能够借助大脑活动来控制计算机或任何其他设备。本文所描述的脑机接口基于法韦尔和唐钦提出的P300拼写器脑机接口范式。提出了一种无监督算法,通过估计空间滤波器来增强P300诱发电位;然后将原始脑电图(EEG)信号投影到估计的信号子空间中。使用记录在三名受试者身上的数据来评估所提出的方法。使用贝叶斯线性判别分析分类器呈现的结果表明,所提出的方法高效且准确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验