Suppr超能文献

基于 Hessian Schatten-norm 正则化的泊松图像重建。

Poisson image reconstruction with Hessian Schatten-norm regularization.

出版信息

IEEE Trans Image Process. 2013 Nov;22(11):4314-27. doi: 10.1109/TIP.2013.2271852. Epub 2013 Jul 3.

Abstract

Poisson inverse problems arise in many modern imaging applications, including biomedical and astronomical ones. The main challenge is to obtain an estimate of the underlying image from a set of measurements degraded by a linear operator and further corrupted by Poisson noise. In this paper, we propose an efficient framework for Poisson image reconstruction, under a regularization approach, which depends on matrix-valued regularization operators. In particular, the employed regularizers involve the Hessian as the regularization operator and Schatten matrix norms as the potential functions. For the solution of the problem, we propose two optimization algorithms that are specifically tailored to the Poisson nature of the noise. These algorithms are based on an augmented-Lagrangian formulation of the problem and correspond to two variants of the alternating direction method of multipliers. Further, we derive a link that relates the proximal map of an l(p) norm with the proximal map of a Schatten matrix norm of order p. This link plays a key role in the development of one of the proposed algorithms. Finally, we provide experimental results on natural and biological images for the task of Poisson image deblurring and demonstrate the practical relevance and effectiveness of the proposed framework.

摘要

泊松反问题在许多现代成像应用中出现,包括生物医学和天文应用。主要的挑战是从一组由线性算子退化并进一步被泊松噪声污染的测量值中获得基础图像的估计。在本文中,我们提出了一种基于正则化方法的泊松图像重建的有效框架,该方法依赖于矩阵值正则化算子。具体来说,所使用的正则化算子涉及作为正则化算子的Hessian 和作为潜在函数的Schatten 矩阵范数。对于问题的解,我们提出了两种专门针对噪声的泊松特性的优化算法。这些算法基于问题的增广拉格朗日公式,对应于交替方向乘子法的两种变体。此外,我们推导出一个将 l(p) 范数的邻近映射与 p 阶 Schatten 矩阵范数的邻近映射联系起来的关系。该关系在开发其中一种提议算法中起着关键作用。最后,我们提供了自然和生物图像的泊松图像去模糊任务的实验结果,展示了所提出框架的实际相关性和有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验