Chongqing Cancer Institute, Chongqing 400030, P.R. China.
Oncol Rep. 2013 Oct;30(4):1793-801. doi: 10.3892/or.2013.2614. Epub 2013 Jul 11.
Ionizing radiation (IR) is currently the most efficient therapy available for malignant glioma. Unfortunately, this strategy is palliative due to the characteristics of radioresistance of malignant glioma. The aim of our study was to compare glioma stem cells (GSCs) with glioma cells (GCs) to determine whether GSCs are responsible for the radioresistance phenotype and to elucidate whether cell cycle checkpoint proteins are responsible for the radioresistance of GSCs. In this study, CD133 (a marker of brain cancer stem cells) and nestin were co-expressed in GSCs isolated from GCs. The percent of CD133+ cells in GSCs and GCs were >80 and <2%, respectively. Significantly more GSCs survived following 2, 4, 6 and 8 Gy IR than GCs. IR kills cancer cells primarily through DNA double-strand breaks (DSBs). The neutral comet assay is often used to intuitively show the level of DSBs. Significantly fewer GSCs showed DNA damage than GCs following 2 Gy IR. This demonstrated that GSCs are more resistant to in vitro radiation than GCs. Furthermore, activated ataxia telangiectasia mutated (ATM) is essential for the activation of downstream effector kinases, such as checkpoint kinase 2 (Chk2) and p53 which mainly contribute to the proper regulation of IR-induced arrest in the G1 phase. DNA damage induced by IR potently initiated activation of phosphorylation of the ATM, p53 and Chk2 checkpoint proteins. Activation of the phosphorylation of these checkpoint proteins was significantly higher in the GSCs compared to GCs. We found that inhibition of ATM activation induced cell cycle checkpoint defects and increased the rate of apoptosis of GSCs following IR. Our results suggest that GSCs were more resistant to radiation compared to GCs due to high expression of phosphorylated cell cycle checkpoint proteins, and inhibition of ATM could significantly reduce the radioresistance of GSCs and GCs. ATM may represent a source of radioresistance in GSCs and a target of improved radiosensitivity of GSCs.
电离辐射(IR)是目前治疗恶性脑胶质瘤最有效的方法。不幸的是,由于恶性脑胶质瘤的放射抵抗特性,这种策略只是姑息性的。我们的研究目的是比较神经胶质瘤干细胞(GSCs)和神经胶质瘤细胞(GCs),以确定 GSCs 是否是放射抵抗表型的原因,并阐明细胞周期检查点蛋白是否是 GSCs 放射抵抗的原因。在这项研究中,CD133(脑肿瘤干细胞的标志物)和巢蛋白在从 GCs 分离的 GSCs 中共同表达。GSCs 中的 CD133+细胞比例>80%,而 GCs 中的比例<2%。经 2、4、6 和 8 Gy IR 处理后,GSCs 的存活率明显高于 GCs。IR 通过 DNA 双链断裂(DSB)主要杀死癌细胞。中性彗星试验常用于直观地显示 DSB 水平。经 2 Gy IR 处理后,GSCs 中的 DNA 损伤明显少于 GCs。这表明 GSCs 比 GCs 更能抵抗体外辐射。此外,激活的共济失调毛细血管扩张突变(ATM)对于下游效应激酶(如检查点激酶 2(Chk2)和 p53)的激活至关重要,后者主要有助于适当调节 IR 诱导的 G1 期阻滞。IR 引起的 DNA 损伤强力启动 ATM、p53 和 Chk2 检查点蛋白的磷酸化激活。与 GCs 相比,GSCs 中这些检查点蛋白磷酸化的激活明显更高。我们发现,抑制 ATM 激活会导致细胞周期检查点缺陷,并增加 GSCs 经 IR 处理后的凋亡率。我们的研究结果表明,与 GCs 相比,GSCs 对辐射的抵抗力更强,这是由于磷酸化细胞周期检查点蛋白的高表达,而抑制 ATM 可以显著降低 GSCs 和 GCs 的放射抵抗性。ATM 可能是 GSCs 放射抵抗的来源,也是提高 GSCs 放射敏感性的靶点。