Suppr超能文献

通过施密特本征值统计测量量子混沌的动力学随机性。

Measuring dynamical randomness of quantum chaos by statistics of Schmidt eigenvalues.

作者信息

Kubotani Hiroto, Adachi Satoshi, Toda Mikito

机构信息

Institute of Physics, Faculty of Engineering, Kanagawa University, Yokohama 221-8686, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062921. doi: 10.1103/PhysRevE.87.062921. Epub 2013 Jun 26.

Abstract

We study statistics of entanglement generated by quantum chaotic dynamics. Using an ensemble of the very large number (>/~10(7)) of quantum states obtained from the temporally evolving coupled kicked tops, we verify that the estimated one-body distribution of the squared Schmidt eigenvalues for the quantum chaotic dynamics can agree surprisingly well with the analytical one for the universality class of the random matrices described by the fixed trace ensemble (FTE). In order to quantify this agreement, we introduce the L(1) norm of the difference between the one-body distributions for the quantum chaos and FTE and use it as an indicator of the dynamical randomness. As we increase the scaled coupling constant, the L(1) difference decreases. When the effective Planck constant is not small enough, the decrease saturates, which implies quantum suppression of dynamical randomness. On the other hand, when the effective Planck constant is small enough, the decrease of the L(1) difference continues until it is masked by statistical fluctuation due to finiteness of the ensemble. Furthermore, we carry out two statistical analyses, the χ(2) goodness of fit test and an autocorrelation analysis, on the difference between the distributions to seek for dynamical remnants buried under the statistical fluctuation. We observe that almost all fluctuating deviations are statistical. However, even for well-developed quantum chaos, unexpectedly, we find a slight nonstatistical deviation near the largest Schmidt eigenvalue. In this way, the statistics of Schmidt eigenvalues enables us to measure dynamical randomness of quantum chaos with reference to the random matrix theory of FTE.

摘要

我们研究由量子混沌动力学产生的纠缠统计。通过使用从随时间演化的耦合踢顶系统获得的大量(> /~10(7))量子态的系综,我们验证了量子混沌动力学的平方施密特本征值的估计单粒子分布能够与固定迹系综(FTE)所描述的随机矩阵的普适类的解析分布惊人地吻合。为了量化这种吻合程度,我们引入量子混沌和FTE的单粒子分布之间差异的L(1)范数,并将其用作动力学随机性的指标。随着我们增大标度耦合常数,L(1)差异减小。当有效普朗克常数不够小时,这种减小会饱和,这意味着动力学随机性的量子抑制。另一方面,当有效普朗克常数足够小时,L(1)差异的减小会持续,直到它被由于系综有限性导致的统计涨落所掩盖。此外,我们对分布之间的差异进行了两种统计分析,即χ(2)拟合优度检验和自相关分析,以寻找隐藏在统计涨落之下的动力学残余。我们观察到几乎所有的波动偏差都是统计性的。然而,即使对于充分发展的量子混沌,出乎意料的是,我们在最大施密特本征值附近发现了轻微的非统计偏差。通过这种方式,施密特本征值的统计使我们能够参照FTE的随机矩阵理论来测量量子混沌的动力学随机性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验