Violante Sara, Ijlst Lodewijk, Te Brinke Heleen, Koster Janet, Tavares de Almeida Isabel, Wanders Ronald J A, Ventura Fátima V, Houten Sander M
Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences, iMed.UL, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
Biochim Biophys Acta. 2013 Sep;1831(9):1467-74. doi: 10.1016/j.bbalip.2013.06.007. Epub 2013 Jul 10.
Fatty acid β-oxidation may occur in both mitochondria and peroxisomes. While peroxisomes oxidize specific carboxylic acids such as very long-chain fatty acids, branched-chain fatty acids, bile acids, and fatty dicarboxylic acids, mitochondria oxidize long-, medium-, and short-chain fatty acids. Oxidation of long-chain substrates requires the carnitine shuttle for mitochondrial access but medium-chain fatty acid oxidation is generally considered carnitine-independent. Using control and carnitine palmitoyltransferase 2 (CPT2)- and carnitine/acylcarnitine translocase (CACT)-deficient human fibroblasts, we investigated the oxidation of lauric acid (C12:0). Measurement of the acylcarnitine profile in the extracellular medium revealed significantly elevated levels of extracellular C10- and C12-carnitine in CPT2- and CACT-deficient fibroblasts. The accumulation of C12-carnitine indicates that lauric acid also uses the carnitine shuttle to access mitochondria. Moreover, the accumulation of extracellular C10-carnitine in CPT2- and CACT-deficient cells suggests an extramitochondrial pathway for the oxidation of lauric acid. Indeed, in the absence of peroxisomes C10-carnitine is not produced, proving that this intermediate is a product of peroxisomal β-oxidation. In conclusion, when the carnitine shuttle is impaired lauric acid is partly oxidized in peroxisomes. This peroxisomal oxidation could be a compensatory mechanism to metabolize straight medium- and long-chain fatty acids, especially in cases of mitochondrial fatty acid β-oxidation deficiency or overload.
脂肪酸β-氧化可发生在线粒体和过氧化物酶体中。过氧化物酶体氧化特定的羧酸,如极长链脂肪酸、支链脂肪酸、胆汁酸和脂肪二羧酸,而线粒体氧化长链、中链和短链脂肪酸。长链底物的氧化需要肉碱穿梭系统进入线粒体,但中链脂肪酸氧化通常被认为不依赖肉碱。我们使用对照以及缺乏肉碱棕榈酰转移酶2(CPT2)和肉碱/脂酰肉碱转位酶(CACT)的人成纤维细胞,研究了月桂酸(C12:0)的氧化。对细胞外培养基中酰基肉碱谱的测量显示,在缺乏CPT2和CACT的成纤维细胞中,细胞外C10-和C12-肉碱水平显著升高。C12-肉碱的积累表明月桂酸也利用肉碱穿梭系统进入线粒体。此外,在缺乏CPT2和CACT的细胞中细胞外C10-肉碱的积累表明月桂酸氧化存在一条线粒体外途径。事实上,在没有过氧化物酶体的情况下不会产生C10-肉碱,这证明该中间产物是过氧化物酶体β-氧化的产物。总之,当肉碱穿梭系统受损时,月桂酸会在过氧化物酶体中部分氧化。这种过氧化物酶体氧化可能是一种代谢直链中链和长链脂肪酸的补偿机制,尤其是在线粒体脂肪酸β-氧化缺乏或过载的情况下。