Suppr超能文献

PPM-Dom:一种新的结构域位置预测方法。

PPM-Dom: a novel method for domain position prediction.

机构信息

College of Chemistry, Sichuan University, Chengdu 610064, China.

出版信息

Comput Biol Chem. 2013 Dec;47:8-15. doi: 10.1016/j.compbiolchem.2013.06.002. Epub 2013 Jun 19.

Abstract

Domains are the structural basis of the physiological functions of proteins, and the prediction of which is an advantageous process on the study of protein structure and function. This article proposes a new complete automatic prediction method, PPM-Dom (Domain Position Prediction Method), for predicting the particular positions of domains in a target protein via its atomic coordinate. The presented method integrates complex networks, community division, and fuzzy mean operator (FMO). The whole sequences are divided into potential domain regions by the complex network and community division, and FMO allows the final determination for the domain position. This method will suffice to predict regions that will form a domain structure and those that are unstructured based on completely new atomic coordinate information of the query sequence, and be able to separate different domains in the same query sequence from each other. On evaluating the performance using an independent testing dataset, PPM-Dom reached 91.41% for prediction accuracy, 96.12% for sensitivity and 92.86% for specificity. The tool bag of PPM-Dom is freely available at http://cic.scu.edu.cn/bioinformatics/PPMDom.zip.

摘要

结构域是蛋白质生理功能的基础,对其进行预测是研究蛋白质结构和功能的一个有利过程。本文提出了一种新的完整自动预测方法 PPM-Dom(结构域位置预测方法),通过目标蛋白质的原子坐标来预测其结构域的特定位置。该方法集成了复杂网络、社区划分和模糊均值算子(FMO)。复杂网络和社区划分将整个序列划分为潜在的结构域区域,FMO 则允许最终确定结构域的位置。该方法足以根据查询序列的全新原子坐标信息预测将形成结构域结构的区域和非结构域区域,并能够将同一查询序列中的不同结构域彼此分离。在使用独立测试数据集评估性能时,PPM-Dom 的预测准确性达到 91.41%,敏感性达到 96.12%,特异性达到 92.86%。PPM-Dom 的工具包可在 http://cic.scu.edu.cn/bioinformatics/PPMDom.zip 上免费获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验