Department of Physics and Astronomy, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada.
J Magn Reson. 2013 Sep;234:95-100. doi: 10.1016/j.jmr.2013.06.010. Epub 2013 Jun 26.
Eddy currents are generated in MR by the use of rapidly switched electromagnets, resulting in time varying and spatially varying magnetic fields that must be either minimized or corrected. This problem is further complicated when non-cylindrical insert magnets are used for specialized applications. Interruption of the coupling between an insert coil and the MR system is typically accomplished using active magnetic shielding. A new method of actively shielding insert gradient and shim coils of any surface geometry by use of the boundary element method for coil design with a minimum energy constraint is presented. This method was applied to shield x- and z-gradient coils for two separate cases: a traditional cylindrical primary gradient with cylindrical shield and, to demonstrate its versatility in surface geometry, the same cylindrical primary gradients with a rectangular box-shaped shield. For the cylindrical case this method produced shields that agreed with analytic solutions. For the second case, the rectangular box-shaped shields demonstrated very good shielding characteristics despite having a different geometry than the primary coils.
磁共振中的涡流是由快速切换的电磁铁产生的,这会导致时变和空间变的磁场,这些磁场必须最小化或纠正。当非圆柱形插入磁铁用于特殊应用时,这个问题会变得更加复杂。通常使用主动磁屏蔽来中断插入线圈和磁共振系统之间的耦合。提出了一种新的方法,通过使用边界元法设计线圈,在最小能量约束下,对任何表面几何形状的插入梯度和调谐线圈进行主动屏蔽。该方法应用于屏蔽两个独立案例的 x 轴和 z 轴梯度线圈:一个带有圆柱形屏蔽的传统圆柱形主梯度,以及为了展示其在表面几何形状方面的多功能性,使用一个矩形盒形屏蔽的相同圆柱形主梯度。对于圆柱形情况,该方法产生的屏蔽与解析解一致。对于第二种情况,尽管矩形盒形屏蔽的几何形状与主线圈不同,但它表现出了非常好的屏蔽特性。