Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
1] Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan [2] Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.
Mol Ther. 2014 Jan;22(1):186-95. doi: 10.1038/mt.2013.165. Epub 2013 Jul 15.
Adipose-derived stem cells (ASCs) hold promise for cartilage regeneration but their chondrogenesis potential is inferior. Here, we used a baculovirus (BV) system that exploited FLPo/Frt-mediated transgene recombination and episomal minicircle formation to genetically engineer rabbit ASCs (rASCs). The BV system conferred prolonged and robust TGF-β3/BMP-6 expression in rASCs cultured in porous scaffolds, which critically augmented rASCs chondrogenesis and suppressed osteogenesis/hypertrophy, leading to the formation of cartilaginous constructs with improved maturity and mechanical properties in 2-week culture. Twelve weeks after implantation into full-thickness articular cartilage defects in rabbits, these engineered constructs regenerated neocartilages that resembled native hyaline cartilages in cell morphology, matrix composition and mechanical properties. The neocartilages also displayed cartilage-specific zonal structures without signs of hypertrophy and degeneration, and eventually integrated with host cartilages. In contrast, rASCs that transiently expressed TGF-β3/BMP-6 underwent osteogenesis/hypertrophy and resulted in the formation of inferior cartilaginous constructs, which after implantation regenerated fibrocartilages. These data underscored the crucial role of TGF-β3/BMP-6 expression level and duration in rASCs in the cell differentiation, constructs properties and in vivo repair. The BV-engineered rASCs that persistently express TGF-β3/BMP-6 improved the chondrogenesis, in vitro cartilaginous constructs production and in vivo hyaline cartilage regeneration, thus representing a remarkable advance in cartilage engineering.
脂肪来源干细胞(ASCs)在软骨再生方面具有广阔的应用前景,但它们的软骨生成潜力较低。在这里,我们使用了一种杆状病毒(BV)系统,该系统利用 FLPo/Frt 介导的转基因重组和染色体外微小环形成来对兔 ASC(rASC)进行基因工程改造。该 BV 系统在多孔支架中培养 rASC 时可长时间稳定地表达 TGF-β3/BMP-6,这显著增强了 rASC 的软骨生成能力,并抑制了成骨/肥大,从而在 2 周的培养过程中形成了具有更高成熟度和机械性能的软骨构建体。将这些工程化构建体植入兔全层关节软骨缺损 12 周后,它们再生的软骨在细胞形态、基质组成和机械性能方面与天然透明软骨相似。这些新生软骨还显示出具有软骨特异性的分区结构,没有肥大和退化的迹象,并最终与宿主软骨整合。相比之下,瞬时表达 TGF-β3/BMP-6 的 rASC 经历了成骨/肥大,并导致形成了较差的软骨构建体,这些构建体在植入后再生出纤维软骨。这些数据强调了 TGF-β3/BMP-6 在 rASC 中的表达水平和持续时间对细胞分化、构建体特性和体内修复的关键作用。持续表达 TGF-β3/BMP-6 的 BV 工程化 rASC 可改善软骨生成、体外软骨构建体的生产和体内透明软骨再生,因此代表了软骨工程学的重大进展。