Suppr超能文献

生精生物信息学:基于蛋白质组学的男性生殖注释。

Bioinformatics for spermatogenesis: annotation of male reproduction based on proteomics.

机构信息

State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.

出版信息

Asian J Androl. 2013 Sep;15(5):594-602. doi: 10.1038/aja.2013.67. Epub 2013 Jul 15.

Abstract

Proteomics strategies have been widely used in the field of male reproduction, both in basic and clinical research. Bioinformatics methods are indispensable in proteomics-based studies and are used for data presentation, database construction and functional annotation. In the present review, we focus on the functional annotation of gene lists obtained through qualitative or quantitative methods, summarizing the common and male reproduction specialized proteomics databases. We introduce several integrated tools used to find the hidden biological significance from the data obtained. We further describe in detail the information on male reproduction derived from Gene Ontology analyses, pathway analyses and biomedical analyses. We provide an overview of bioinformatics annotations in spermatogenesis, from gene function to biological function and from biological function to clinical application. On the basis of recently published proteomics studies and associated data, we show that bioinformatics methods help us to discover drug targets for sperm motility and to scan for cancer-testis genes. In addition, we summarize the online resources relevant to male reproduction research for the exploration of the regulation of spermatogenesis.

摘要

蛋白质组学策略在男性生殖领域的基础和临床研究中都得到了广泛应用。生物信息学方法在基于蛋白质组学的研究中是不可或缺的,用于数据呈现、数据库构建和功能注释。在本综述中,我们专注于通过定性或定量方法获得的基因列表的功能注释,总结了常见的和专门针对男性生殖的蛋白质组学数据库。我们介绍了几个用于从获得的数据中发现隐藏的生物学意义的综合工具。我们进一步详细描述了从基因功能到生物学功能,再到临床应用的与男性生殖相关的信息。我们概述了精子发生中的生物信息学注释,从基因功能到生物学功能,再到临床应用。基于最近发表的蛋白质组学研究和相关数据,我们表明生物信息学方法有助于我们发现精子运动的药物靶点,并寻找癌症睾丸基因。此外,我们总结了与男性生殖研究相关的在线资源,以探索精子发生的调控。

相似文献

1
Bioinformatics for spermatogenesis: annotation of male reproduction based on proteomics.
Asian J Androl. 2013 Sep;15(5):594-602. doi: 10.1038/aja.2013.67. Epub 2013 Jul 15.
2
Functional annotation and biological interpretation of proteomics data.
Biochim Biophys Acta. 2015 Jan;1854(1):46-54. doi: 10.1016/j.bbapap.2014.10.019. Epub 2014 Oct 31.
3
How Does the Scientific Community Contribute to Gene Ontology?
Methods Mol Biol. 2017;1446:85-93. doi: 10.1007/978-1-4939-3743-1_7.
5
Evaluating Computational Gene Ontology Annotations.
Methods Mol Biol. 2017;1446:97-109. doi: 10.1007/978-1-4939-3743-1_8.
6
An integrated bioinformatics analysis of mouse testis protein profiles with new understanding.
BMB Rep. 2011 May;44(5):347-51. doi: 10.5483/BMBRep.2011.44.5.347.
7
Spermatogenesis in mammals: proteomic insights.
Syst Biol Reprod Med. 2012 Aug;58(4):179-90. doi: 10.3109/19396368.2012.691943.
8
Cross-organism learning method to discover new gene functionalities.
Comput Methods Programs Biomed. 2016 Apr;126:20-34. doi: 10.1016/j.cmpb.2015.12.002. Epub 2015 Dec 17.
9
GO FEAT: a rapid web-based functional annotation tool for genomic and transcriptomic data.
Sci Rep. 2018 Jan 29;8(1):1794. doi: 10.1038/s41598-018-20211-9.
10
Expanding the horizons of microRNA bioinformatics.
RNA. 2018 Aug;24(8):1005-1017. doi: 10.1261/rna.065565.118. Epub 2018 Jun 5.

引用本文的文献

2
A Critical Review of Proteomic Studies in Gestational Diabetes Mellitus.
J Diabetes Res. 2020 Jul 14;2020:6450352. doi: 10.1155/2020/6450352. eCollection 2020.
4
Quantitative Proteomic Analysis of Human Seminal Plasma from Normozoospermic and Asthenozoospermic Individuals.
Biomed Res Int. 2019 Mar 10;2019:2735038. doi: 10.1155/2019/2735038. eCollection 2019.
6
Update on the proteomics of male infertility: A systematic review.
Arab J Urol. 2017 Dec 29;16(1):103-112. doi: 10.1016/j.aju.2017.11.016. eCollection 2018 Mar.
8
Protein Bioinformatics Databases and Resources.
Methods Mol Biol. 2017;1558:3-39. doi: 10.1007/978-1-4939-6783-4_1.
9
Impact of precise modulation of reactive oxygen species levels on spermatozoa proteins in infertile men.
Clin Proteomics. 2015 Feb 9;12(1):4. doi: 10.1186/1559-0275-12-4. eCollection 2015.

本文引用的文献

1
Scanning of novel cancer/testis proteins by human testis proteomic analysis.
Proteomics. 2013 Apr;13(7):1200-10. doi: 10.1002/pmic.201200489. Epub 2013 Mar 6.
2
The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility.
Fertil Steril. 2013 Mar 15;99(4):998-1007. doi: 10.1016/j.fertnstert.2013.01.111. Epub 2013 Feb 15.
3
4
In-depth proteomic analysis of the human sperm reveals complex protein compositions.
J Proteomics. 2013 Feb 21;79:114-22. doi: 10.1016/j.jprot.2012.12.008. Epub 2012 Dec 23.
5
HMDB 3.0--The Human Metabolome Database in 2013.
Nucleic Acids Res. 2013 Jan;41(Database issue):D801-7. doi: 10.1093/nar/gks1065. Epub 2012 Nov 17.
6
Gene Ontology annotations and resources.
Nucleic Acids Res. 2013 Jan;41(Database issue):D530-5. doi: 10.1093/nar/gks1050. Epub 2012 Nov 17.
7
The cancer testis antigen PRAME as a biomarker for solid tumor cancer management.
Biomark Med. 2012 Oct;6(5):629-32. doi: 10.2217/bmm.12.65.
8
An integrated encyclopedia of DNA elements in the human genome.
Nature. 2012 Sep 6;489(7414):57-74. doi: 10.1038/nature11247.
9
Metabolic regulation is important for spermatogenesis.
Nat Rev Urol. 2012 May 1;9(6):330-8. doi: 10.1038/nrurol.2012.77.
10
RNA-Seq Atlas--a reference database for gene expression profiling in normal tissue by next-generation sequencing.
Bioinformatics. 2012 Apr 15;28(8):1184-5. doi: 10.1093/bioinformatics/bts084. Epub 2012 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验