Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712, USA.
Chemistry. 2013 Aug 12;19(33):10866-75. doi: 10.1002/chem.201301247. Epub 2013 Jul 12.
High yielding syntheses of 1-(ferrocenylmethyl)-3-mesitylimidazolium iodide (1) and 1-(ferrocenylmethyl)-3-mesitylimidazol-2-ylidene (2) were developed. Complexation of 2 to [{Ir(cod)Cl}2] (cod=cis,cis-1,5-cyclooctadiene) or [Ru(PCy3)Cl2(=CH-o-O-iPrC6H4)] (Cy=cyclohexyl) afforded 3 ([Ir(2)(cod)Cl]) and 5 ([Ru(2)Cl2(=CH-o-O-iPrC6H4)]), respectively. Complex 4 ([Ir(2)(CO)2Cl]) was obtained by bubbling carbon monoxide through a solution of 3 in CH2Cl2. Spectroelectrochemical IR analysis of 4 revealed that the oxidation of the ferrocene moiety in 2 significantly reduced the electron-donating ability of the N-heterocyclic carbene ligand (ΔTEP=9 cm(-1); TEP=Tolman electronic parameter). The oxidation of 5 with [Fe(η(5)-C5H4COMe)Cp][BF4] as well as the subsequent reduction of the corresponding product [5][BF4] with decamethylferrocene (Fc*) each proceeded in greater than 95% yield. Mössbauer, UV/Vis and EPR spectroscopy analysis confirmed that [5][BF4] contained a ferrocenium species, indicating that the iron center was selectively oxidized over the ruthenium center. Complexes 5 and [5][BF4] were found to catalyze the ring-closing metathesis (RCM) of diethyl diallylmalonate with observed pseudo-first-order rate constants (k(obs)) of 3.1×10(-4) and 1.2×10(-5) s(-1), respectively. By adding suitable oxidants or reductants over the course of a RCM reaction, complex 5 was switched between different states of catalytic activity. A second-generation N-heterocyclic carbene that featured a 1',2',3',4',5'- pentamethylferrocenyl moiety (10) was also prepared and metal complexes containing this ligand were found to undergo iron-centered oxidations at lower potentials than analogous complexes supported by 2 (0.30-0.36 V vs. 0.56-0.62 V, respectively). Redox switching experiments using [Ru(10)Cl2(=CH-o-O-iPrC6H4)] revealed that greater than 94% of the initial catalytic activity was restored after an oxidation-reduction cycle.
开发了高产率的 1-(二茂铁基甲基)-3-均三甲苯基咪唑𬭩碘化物(1)和 1-(二茂铁基甲基)-3-均三甲苯基咪唑-2-亚基(2)的合成方法。2 与[{Ir(cod)Cl}2](cod=顺式,顺-1,5-环辛二烯)或[Ru(PCy3)Cl2(=CH-o-O-iPrC6H4)](Cy=环己基)配位,分别得到 3([Ir(2)(cod)Cl])和 5([Ru(2)Cl2(=CH-o-O-iPrC6H4)])。通过将一氧化碳鼓泡通入 3 在 CH2Cl2 中的溶液,得到了 4([Ir(2)(CO)2Cl])。对 4 的光谱电化学 IR 分析表明,2 中二茂铁部分的氧化显著降低了 N-杂环卡宾配体的供电子能力(ΔTEP=9 cm(-1);TEP=Tolman 电子参数)。用[Fe(η(5)-C5H4COMe)Cp][BF4]氧化 5,以及随后用十甲基二茂铁(Fc*)还原相应产物[5][BF4],产率均大于 95%。穆斯堡尔、紫外/可见和 EPR 光谱分析证实[5][BF4]含有二茂铁物种,表明铁中心被选择性氧化,而钌中心保持还原。发现配合物 5 和[5][BF4]可以催化二乙基烯丙基丙二酸二乙酯的闭环复分解(RCM),观察到的假一级速率常数(k(obs))分别为 3.1×10(-4)和 1.2×10(-5)s(-1)。在 RCM 反应过程中添加合适的氧化剂或还原剂,可以使 5 切换到不同的催化活性状态。还制备了具有 1',2',3',4',5'-五甲基二茂铁基的第二代 N-杂环卡宾(10),并发现含有该配体的金属配合物的铁中心氧化电势低于 2 支持的类似配合物(分别为 0.30-0.36 V 与 0.56-0.62 V)。使用[Ru(10)Cl2(=CH-o-O-iPrC6H4)]进行的氧化还原开关实验表明,氧化还原循环后,初始催化活性的 94%以上得到恢复。