Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
Semin Thromb Hemost. 2013 Sep;39(6):613-20. doi: 10.1055/s-0033-1349223. Epub 2013 Jul 12.
Combined deficiency of factor V (FV) and FVIII (F5F8D) is an autosomal recessive bleeding disorder characterized by simultaneous decreases of both coagulation factors. This review summarizes recent reports on the clinical presentations, treatments, and molecular mechanism of F5F8D. Genetic studies identified LMAN1 and MCFD2 as causative genes for this disorder, revealing a previously unknown intracellular transport pathway shared by the two important blood coagulation factors. LMAN1 and MCFD2 form a Ca2+-dependent cargo receptor complex that functions in the transport of FV/FVIII from the endoplasmic reticulum (ER) to the Golgi. Disrupting the LMAN1-MCFD2 receptor, complex formation is the primary molecular defect of missense mutations leading to F5F8D. The EF-hand domains of MCFD2 are necessary and sufficient for the interactions with both LMAN1 and FV/FVIII. Similarly, the carbohydrate recognition domain of LMAN1 contains distinct and separable binding sites for both MCFD2 and FV/FVIII. Therefore, FV and FVIII likely carry duel sorting signals that are separately recognized by LMAN1 and MCFD2 and necessary for the efficient ER-to-Golgi transport. FV and FVIII likely bind LMAN1 through the high-mannose N-linked glycans under the higher Ca2+ conditions in the ER and dissociate in the lower Ca2+ environment of the ER-Golgi intermediate compartment.
FV 和 FVIII 联合缺乏症(F5F8D)是一种常染色体隐性出血性疾病,其特征是两种凝血因子同时减少。本综述总结了 F5F8D 的临床表现、治疗方法和分子机制的最新研究报告。遗传研究确定了 LMAN1 和 MCFD2 是该疾病的致病基因,揭示了两个重要的血液凝血因子共同存在的一个未知的细胞内运输途径。LMAN1 和 MCFD2 形成一个 Ca2+依赖性货物受体复合物,该复合物在 FV/FVIII 从内质网(ER)到高尔基体的运输中起作用。破坏 LMAN1-MCFD2 受体,复合物的形成是导致 F5F8D 的错义突变的主要分子缺陷。MCFD2 的 EF 手结构域对于与 LMAN1 和 FV/FVIII 的相互作用是必需且充分的。同样,LMAN1 的碳水化合物识别结构域包含用于 MCFD2 和 FV/FVIII 的独特且可分离的结合位点。因此,FV 和 FVIII 可能携带双重分拣信号,这些信号分别被 LMAN1 和 MCFD2 识别,是 ER 到高尔基体运输所必需的。FV 和 FVIII 可能通过内质网中较高的 Ca2+条件下的高甘露糖 N 连接糖与 LMAN1 结合,并在内质网-高尔基体中间隔室的较低 Ca2+环境中解离。