Jabbari Mohammad Hadi, Ghadimi Parviz, Sayehbani Mesbah, Reisinezhad Arsham
Department of Marine Technology, Amirkabir University of Technology, PO Box 15875-4413, Tehran, Iran.
ScientificWorldJournal. 2013 Jun 17;2013:306535. doi: 10.1155/2013/306535. Print 2013.
This paper presents a numerical model based on one-dimensional Beji and Nadaoka's Extended Boussinesq equations for simulation of periodic wave shoaling and its decomposition over morphological beaches. A unique Galerkin finite element and Adams-Bashforth-Moulton predictor-corrector methods are employed for spatial and temporal discretization, respectively. For direct application of linear finite element method in spatial discretization, an auxiliary variable is hereby introduced, and a particular numerical scheme is offered to rewrite the equations in lower-order form. Stability of the suggested numerical method is also analyzed. Subsequently, in order to display the ability of the presented model, four different test cases are considered. In these test cases, dispersive and nonlinearity effects of the periodic waves over sloping beaches and barred beaches, which are the common coastal profiles, are investigated. Outputs are compared with other existing numerical and experimental data. Finally, it is concluded that the current model can be further developed to model any morphological development of coastal profiles.
本文提出了一种基于一维贝吉(Beji)和直冈(Nadaoka)扩展的布辛涅斯克(Boussinesq)方程的数值模型,用于模拟周期性波浪在形态海滩上的浅化及其分解。分别采用独特的伽辽金(Galerkin)有限元法和亚当斯-巴什福思-莫尔顿(Adams-Bashforth-Moulton)预估-校正法进行空间和时间离散化。为了在线性有限元法在空间离散化中直接应用,在此引入一个辅助变量,并提供一种特殊的数值格式将方程改写为低阶形式。还分析了所建议数值方法的稳定性。随后,为了展示所提出模型的能力,考虑了四个不同的测试案例。在这些测试案例中,研究了周期性波浪在倾斜海滩和有沙坝海滩(这是常见的海岸剖面)上的色散和非线性效应。将输出结果与其他现有的数值和实验数据进行比较。最后得出结论,当前模型可以进一步开发以模拟海岸剖面的任何形态演变。