Suppr超能文献

包括极端暴露情况在内的低压减压病概率。

Probability of hypobaric decompression sickness including extreme exposures.

作者信息

Conkin Johnny, Gernhardt Michael L, Abercromby Andrew F, Feiveson Alan H

机构信息

Universities Space Research Association, Houston, TX 77058-2769, USA.

出版信息

Aviat Space Environ Med. 2013 Jul;84(7):661-8. doi: 10.3357/asem.3506.2013.

Abstract

INTRODUCTION

The fitting of probabilistic decompression sickness (DCS) models is more effective when data encompass a wide range of DCS incidence. We obtained such data from the Air Force Research Laboratory Altitude Decompression Sickness Research Database. The data are results from 29 tests comprising 708 human altitude chamber exposures (536 men and 172 women). There were 340 DCS outcomes with per-test DCS incidence ranging from 0 to 88%. The tests were characterized by direct ascent at a rate of 5000 ft x min(-1) (1524 m x min(-1)) to a range of altitudes (226 to 378 mmHg) for 4 h after prebreathe times of varying length and with varying degrees of physical activity while at altitude.

METHODS

Logistic regression was used to develop an expression for the probability of DCS [P(DCS)] using the Hill equation with decompression dose as the main predictor. Here, decompression dose is defined in terms of either the tissue ratio (TR) or a bubble growth index (BGI). Other predictors in the model were gender and peak exercise intensity at altitude.

RESULTS

All three predictors (decompression dose, gender, and exercise intensity) were important contributions to the model for P(DCS).

DISCUSSION

Higher TR or BGI, male gender, and higher exercise intensity at altitude all increased the modeled decompression dose. Using either TR or BGI to define decompression dose provided comparable results, suggesting that a simple TR is adequate for simple altitude exposures as an abstraction of the true decompression dose. The model is primarily heuristic and limits estimates of P(DCS) to only a 4-h exposure.

摘要

引言

当数据涵盖广泛的减压病(DCS)发病率时,概率性减压病模型的拟合效果更佳。我们从空军研究实验室高空减压病研究数据库中获取了此类数据。这些数据来自29项测试,包括708次人体高空舱暴露(536名男性和172名女性)。有340例减压病结果,每次测试的减压病发病率范围为0至88%。这些测试的特点是在不同时长的预呼吸后,以5000英尺/分钟(1524米/分钟)的速率直接上升到一系列海拔高度(226至378毫米汞柱),并在高空停留4小时,同时伴有不同程度的体力活动。

方法

使用逻辑回归,以减压剂量作为主要预测因子,通过希尔方程建立减压病概率[P(DCS)]的表达式。在此,减压剂量根据组织比(TR)或气泡生长指数(BGI)来定义。模型中的其他预测因子为性别和高空时的峰值运动强度。

结果

所有三个预测因子(减压剂量、性别和运动强度)对P(DCS)模型都有重要贡献。

讨论

较高的TR或BGI、男性性别以及较高的高空运动强度均增加了模型中的减压剂量。使用TR或BGI来定义减压剂量得到了类似的结果,这表明对于简单的高空暴露,简单的TR作为真实减压剂量的一种抽象是足够的。该模型主要是启发式的,并且将P(DCS)的估计限制在仅4小时的暴露。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验