Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
Chemistry. 2013 Aug 12;19(33):10854-65. doi: 10.1002/chem.201301323. Epub 2013 Jul 15.
Dodecahydro-N-ethylcarbazole (H12-NEC) has been proposed as a potential liquid organic hydrogen carrier (LOHC) for chemical energy storage, as it combines both favourable physicochemical and thermodynamic properties. The design of optimised dehydrogenation catalysts for LOHC technology requires a detailed understanding of the reaction pathways and the microkinetics. Here, we investigate the dehydrogenation mechanism of H12-NEC on Pd(111) by using a surface-science approach under ultrahigh vacuum conditions. By combining infrared reflection-absorption spectroscopy, density functional theory calculations and X-ray photoelectron spectroscopy, surface intermediates and their stability are identified. We show that H12-NEC adsorbs molecularly up to 173 K. Above this temperature (223 K), activation of C-H bonds is observed within the five-membered ring. Rapid dehydrogenation occurs to octahydro-N-ethylcarbazole (H8-NEC), which is identified as a stable surface intermediate at 223 K. Above 273 K, further dehydrogenation of H8-NEC proceeds within the six-membered rings. Starting from clean Pd(111), C-N bond scission, an undesired side reaction, is observed above 350 K. By complementing surface spectroscopy, we present a temperature-programmed molecular beam experiment, which permits direct observation of dehydrogenation products in the gas phase during continuous dosing of the LOHC. We identify H8-NEC as the main product desorbing from Pd(111). The onset temperature for H8-NEC desorption is 330 K, the maximum reaction rate is reached around 550 K. The fact that preferential desorption of H8-NEC is observed even above the temperature threshold for H8-NEC dehydrogenation on the clean surface is attributed to the presence of surface dehydrogenation and decomposition products during continuous reactant exposure.
十二氢-N-乙基咔唑(H12-NEC)因其具有良好的物理化学和热力学性质,被提议作为一种有潜力的液体有机氢载体(LOHC)用于化学能量存储。对于 LOHC 技术,设计优化的脱氢催化剂需要对反应途径和微观动力学有详细的了解。在这里,我们在超高真空条件下使用表面科学方法研究了 H12-NEC 在 Pd(111)上的脱氢机理。通过结合红外反射吸收光谱、密度泛函理论计算和 X 射线光电子能谱,确定了表面中间体及其稳定性。我们表明,H12-NEC 在 173 K 以下以分子形式吸附。在这个温度以上(223 K),观察到五元环内的 C-H 键活化。快速脱氢发生在八氢-N-乙基咔唑(H8-NEC)上,H8-NEC 在 223 K 时被确定为稳定的表面中间体。在 273 K 以上,六元环内进一步脱氢。在 350 K 以上,从清洁的 Pd(111)开始,观察到 C-N 键断裂,这是一种不希望的副反应。通过补充表面光谱,我们进行了一个程序升温分子束实验,该实验允许在 LOHC 连续进料过程中直接观察气相中的脱氢产物。我们确定 H8-NEC 是从 Pd(111)上脱附的主要产物。H8-NEC 脱附的起始温度为 330 K,最大反应速率在 550 K 左右达到。即使在清洁表面上 H8-NEC 脱氢的温度阈值以上也观察到 H8-NEC 的优先脱附,这归因于在连续反应物暴露期间表面脱氢和分解产物的存在。