Suppr超能文献

三营养级食物链系统中级联迁移的数学建模

Mathematical modeling of cascading migration in a tri-trophic food-chain system.

作者信息

Samanta S, Chowdhury T, Chattopadhyay J

机构信息

Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India.

出版信息

J Biol Phys. 2013 Jun;39(3):469-87. doi: 10.1007/s10867-013-9311-2. Epub 2013 Apr 7.

Abstract

Diel vertical migration is a behavioral antipredator defense that is shaped by a trade-off between higher predation risk in surface waters and reduced growth in deeper waters. The strength of migration of zooplankton increases with a rise in the abundance of predators and their exudates (kairomone). Recent studies span multiple trophic levels, which lead to the concept of coupled vertical migration. The migrations that occur at one trophic level can affect the vertical migration of the next lower trophic level, and so on, throughout the food chain. This is called cascading migration. In this paper, we introduce cascading migration in a well-known model (Hastings and Powell, Ecology 73:896-903, 1991). We represent the dynamics of the system as proposed by Hastings and Powell as a phytoplankton-zooplankton-fish (prey-middle predator-top predator) model where fish affect the migrations of zooplankton, which in turn affect the migrations of motile phytoplankton. The system under cascading migration enhances system stability and population coexistence. It is also observed that for a higher rate of cascading migration, the system shows chaotic behavior. We conclude that the observations of Hastings and Powell remain true if the cascading migration rate is high enough.

摘要

昼夜垂直迁移是一种行为性的反捕食防御机制,它是由表层水域较高的捕食风险与深层水域生长减缓之间的权衡所塑造的。浮游动物的迁移强度随着捕食者及其分泌物(信息素)丰度的增加而增强。最近的研究涵盖了多个营养级,这导致了耦合垂直迁移的概念。在一个营养级发生的迁移可以影响下一个较低营养级的垂直迁移,依此类推,贯穿整个食物链。这被称为级联迁移。在本文中,我们在一个著名的模型(黑斯廷斯和鲍威尔,《生态学》73:896 - 903,1991)中引入级联迁移。我们将黑斯廷斯和鲍威尔提出的系统动态表示为一个浮游植物 - 浮游动物 - 鱼类(猎物 - 中级捕食者 - 顶级捕食者)模型,其中鱼类影响浮游动物的迁移,而浮游动物的迁移又反过来影响游动性浮游植物的迁移。级联迁移下的系统增强了系统稳定性和种群共存性。还观察到,对于较高的级联迁移速率,系统表现出混沌行为。我们得出结论,如果级联迁移速率足够高,黑斯廷斯和鲍威尔的观察结果仍然成立。

相似文献

1
Mathematical modeling of cascading migration in a tri-trophic food-chain system.
J Biol Phys. 2013 Jun;39(3):469-87. doi: 10.1007/s10867-013-9311-2. Epub 2013 Apr 7.
2
3
Two hundred years of zooplankton vertical migration research.
Biol Rev Camb Philos Soc. 2021 Aug;96(4):1547-1589. doi: 10.1111/brv.12715. Epub 2021 May 4.
5
Prey adaptation along a competition-defense tradeoff cryptically shifts trophic cascades from density- to trait-mediated.
Oecologia. 2020 Mar;192(3):767-778. doi: 10.1007/s00442-020-04610-2. Epub 2020 Jan 27.
6
Parametric analysis of a predator-prey system stabilized by a top predator.
J Math Biol. 2006 Aug;53(2):305-35. doi: 10.1007/s00285-006-0008-z. Epub 2006 Jun 10.

引用本文的文献

1
Chaos in a nonautonomous eco-epidemiological model with delay.
Appl Math Model. 2020 Mar;79:865-880. doi: 10.1016/j.apm.2019.11.006. Epub 2019 Nov 8.

本文引用的文献

1
SOME OBSERVATIONS ON THE VERTICAL MIGRATION OFDINOFLAGELLATES (1) (2).
J Phycol. 1968 Dec;4(4):333-40. doi: 10.1111/j.1529-8817.1968.tb04704.x.
2
LIPID CLASS, CAROTENOID, AND TOXIN DYNAMICS OF KARENIA BREVIS (DINOPHYCEAE) DURING DIEL VERTICAL MIGRATION(1).
J Phycol. 2009 Feb;45(1):154-63. doi: 10.1111/j.1529-8817.2008.00627.x. Epub 2009 Feb 3.
3
Methods of aggregation of variables in population dynamics.
C R Acad Sci III. 2000 Aug;323(8):665-74. doi: 10.1016/s0764-4469(00)00182-7.
4
Emergence of population growth models: fast migration and slow growth.
J Theor Biol. 1996 Sep 21;182(2):99-108. doi: 10.1006/jtbi.1996.0145.
5
The structural stability of a three-species food chain model.
J Theor Biol. 1995 Oct 21;176(4):501-10. doi: 10.1006/jtbi.1995.0216.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验