Morozov Andrew Y, Li Bai-Lian
Ecological Complexity and Modeling Laboratory, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA.
J Math Biol. 2006 Aug;53(2):305-35. doi: 10.1007/s00285-006-0008-z. Epub 2006 Jun 10.
We present a complete parametric analysis of a predator-prey system influenced by a top predator. We study ecosystems with abundant nutrient supply for the prey where the prey multiplication can be considered as proportional to its density. The main questions we examine are the following: (1) Can the top predator stabilize such a system at low densities of prey? (2) What possible dynamic behaviors can occur? (3) Under which conditions can the top predation result in the system stabilization? We use a system of two nonlinear ordinary differential equations with the density of the top predator as a parameter. The model is investigated with methods of qualitative theory of ODEs and the theory of bifurcations. The existence of 12 qualitatively different types of dynamics and complex structure of the parametric space are demonstrated. Our studies of phase portraits and parametric diagrams show that a top predator can be an important factor leading to stabilization of the predator-prey system with abundant nutrient supply. Although the model here is applied to the plankton communities with fish (or carnivorous zooplankton) as the top trophic level, the general form of the equations allows applications of our results to other ecological systems.
我们对一个受顶级捕食者影响的捕食-猎物系统进行了完整的参数分析。我们研究的生态系统中猎物有丰富的营养供应,猎物的繁殖可视为与其密度成正比。我们研究的主要问题如下:(1)顶级捕食者能否在猎物低密度时使这样的系统稳定?(2)可能会出现哪些动态行为?(3)在哪些条件下顶级捕食会导致系统稳定?我们使用一个以顶级捕食者密度为参数的两个非线性常微分方程系统。用常微分方程定性理论和分岔理论方法对该模型进行了研究。证明了存在12种定性不同类型的动力学以及参数空间的复杂结构。我们对相图和参数图的研究表明,顶级捕食者可能是导致营养供应丰富的捕食-猎物系统稳定的一个重要因素。尽管这里的模型应用于以鱼类(或肉食性浮游动物)为顶级营养级的浮游生物群落,但方程的一般形式使我们的结果可应用于其他生态系统。