Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India.
J Chem Phys. 2013 Jul 14;139(2):024905. doi: 10.1063/1.4812801.
The polyamidoamine (PAMAM) dendrimer prevents HIV-1 entry into target cells in vitro. Its mechanism of action, however, remains unclear and precludes the design of potent dendrimers targeting HIV-1 entry. We employed steered molecular dynamics simulations to examine whether the HIV-1 gp120-CD4 complex is a target of PAMAM. Our simulations mimicked single molecule force spectroscopy studies of the unbinding of the gp120-CD4 complex under the influence of a controlled external force. We found that the complex dissociates via complex pathways and defies the standard classification of adhesion molecules as catch and slip bonds. When the force loading rate was large, the complex behaved as a slip bond, weakening gradually. When the loading rate was small, the complex initially strengthened, akin to a catch bond, but eventually dissociated over shorter separations than with large loading rates. PAMAM docked to gp120 and destabilized the gp120-CD4 complex. The rupture force of the complex was lowered by PAMAM. PAMAM disrupted salt bridges and hydrogen bonds across the gp120-CD4 interface and altered the hydration pattern of the hydrophobic cavity in the interface. In addition, intriguingly, PAMAM suppressed the distinction in the dissociation pathways of the complex between the small and large loading rate regimes. Taken together, our simulations reveal that PAMAM targets the gp120-CD4 complex at two levels: it weakens the complex and also alters its dissociation pathway, potentially inhibiting HIV-1 entry.
聚酰胺-胺(PAMAM)树枝状聚合物可防止 HIV-1 进入体外靶细胞。然而,其作用机制尚不清楚,这也妨碍了针对 HIV-1 进入的有效树枝状聚合物的设计。我们采用定向分子动力学模拟来研究 HIV-1 gp120-CD4 复合物是否是 PAMAM 的靶标。我们的模拟模拟了在受控外力影响下 gp120-CD4 复合物非键合的单分子力谱研究。我们发现,该复合物通过复杂的途径解离,并且不符合将粘附分子分类为捕获和滑动键的标准。当力加载速率较大时,复合物表现为滑动键,逐渐减弱。当加载速率较小时,复合物最初会增强,类似于捕获键,但最终会在比大加载速率更短的距离上解离。PAMAM 与 gp120 对接并使 gp120-CD4 复合物不稳定。PAMAM 降低了复合物的断裂力。PAMAM 破坏了 gp120-CD4 界面上的盐桥和氢键,并改变了界面上疏水腔的水合模式。此外,有趣的是,PAMAM 抑制了复合物在小和大加载速率之间的解离途径的区别。总之,我们的模拟表明,PAMAM 在两个水平上靶向 gp120-CD4 复合物:它削弱了复合物,并且还改变了其解离途径,从而可能抑制 HIV-1 进入。