Dipartimento di Scienze Chimiche e Geologiche, Research Unit of INSTM, Università di Cagliari, S.S. 554-Bivio per Sestu, I09042 Monserrato-Cagliari, Italy.
Dalton Trans. 2013 Sep 14;42(34):12429-39. doi: 10.1039/c3dt51407b. Epub 2013 Jul 17.
Mixing M(Et2dazdt)22 [M = Ni(II), Pd(II), Pt(II); Et2dazdt = N,N'-diethyl-perhydrodiazepine-2,3-dithione] with (Bu4N)2[M(mnt)2] (mnt = maleonitrile-2,3-dithiolate) in CH3CN produces the known mixed ligand dithiolene complex [Ni(Et2dazdt)(mnt)] in the nickel case and ion-pair salts [M(Et2dazdt)2][M(mnt)2] in the palladium (1) and platinum (2) cases. Structural characterization of 2 shows that the anionic (donor) and cationic (acceptor) complexes form an irregular stack that lies in the bc crystallographic plane. The shortest contacts exchanged by the anion and cation molecules within each stack are those occurring through the hydrogen atoms of the CH2 groups of Et2dazdt and the Pt(2)-S(22) segment (d(H(81a)-S(22) = 2.981(3) Å) and the nitrogen atom of the cyano group of mnt and the carbon atom of one of the thione moieties (d(N(12)-C(11) = 3.179(3) Å). The Pt atom of Pt(mnt)2 is surrounded by two hydrogen atoms of the Et2dazdt ligand, whereas the Pt atom of Pt(Et2dazdt)2 is surrounded by two carbon atoms of the dithiolate moiety of mnt. Intramolecular interactions are due to contacts exchanged mainly through H-atoms, which are suitable to mediate charge-transfer (CT) interactions. In fact, these salts are characterized by a long wavelength CT peak [λmax = 905 nm (1), 937 nm (2)], which makes them candidates as near-infrared pigments, whose properties are tunable with the redox features of the components, the energy of the NIR absorption being relatable to the driving force of electron transfer from the donor (dianion) to the acceptor (dication). A thorough description of interactions occurring between the complex anions and complex cations has been achieved by investigating the Hirshfeld surface (HS) properties. Computational methods are in agreement with experimental findings and allow us to highlight the electronic features of the components of these CT salts, providing a structure-property relationship, useful in designing new candidates to optimize the desired properties.
将 M(Et2dazdt)22 [M = Ni(II), Pd(II), Pt(II); Et2dazdt = N,N'-diethyl-perhydrodiazepine-2,3-dithione] 与 (Bu4N)2[M(mnt)2](mnt = 丙二腈-2,3-二硫代)在 CH3CN 中混合会产生已知的混合配体二硫烯配合物 [Ni(Et2dazdt)(mnt)] 在镍的情况下,以及钯(1)和铂(2)情况下的离子对盐 [M(Et2dazdt)2][M(mnt)2]。2 的结构特征表明,阴离子(供体)和阳离子(受体)配合物形成不规则堆积,位于 bc 晶面。每个堆叠中阴离子和阳离子分子之间交换的最短接触是通过 Et2dazdt 的 CH2 基团的氢原子和 Pt(2)-S(22) 段(d(H(81a)-S(22) = 2.981(3) Å) 和 mnt 的氰基氮原子和一个硫酮部分的碳原子(d(N(12)-C(11) = 3.179(3) Å)。Pt(mnt)2 的 Pt 原子被 Et2dazdt 配体的两个氢原子包围,而 Pt(Et2dazdt)2 的 Pt 原子被 mnt 的二硫代部分的两个碳原子包围。分子内相互作用是由于主要通过 H 原子交换接触引起的,这些 H 原子适合介导电荷转移(CT)相互作用。事实上,这些盐的特征是长波长 CT 峰 [λmax = 905 nm (1), 937 nm (2)],这使它们成为近红外颜料的候选物,其性质可以通过组件的氧化还原特性进行调节,NIR 吸收的能量与从供体(二价阴离子)到受体(二价阳离子)的电子转移的驱动力有关。通过研究 Hirshfeld 表面(HS)特性,对配合物阴离子和配合物阳离子之间发生的相互作用进行了全面描述。计算方法与实验结果一致,使我们能够突出这些 CT 盐的成分的电子特性,提供结构-性质关系,有助于设计新的候选物以优化所需的性质。