Suppr超能文献

The vitamin K-dependent carboxylation system in human osteosarcoma U2-OS cells. Antidotal effect of vitamin K1 and a novel mechanism for the action of warfarin.

作者信息

Wallin R, Rossi F, Loeser R, Key L L

机构信息

Department of Medicine, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27103.

出版信息

Biochem J. 1990 Jul 15;269(2):459-64. doi: 10.1042/bj2690459.

Abstract

An osteoblast-like human osteosarcoma cell line (U2-OS) has been shown to possess a vitamin K-dependent carboxylation system which is similar to the system in human HepG2 cells and in liver and lung from the rat. In an 'in vitro' system prepared from these cells, vitamin K1 was shown to overcome warfarin inhibition of gamma-carboxylation carried out by the vitamin K-dependent carboxylase. The data suggest that osteoblasts, the cells involved in synthesis of vitamin K-dependent proteins in bone, can use vitamin K1 as an antidote to warfarin poisoning if enough vitamin K1 can accumulate in the tissue. Five precursors of vitamin K-dependent proteins were identified in osteosarcoma and HepG2 cells respectively. In microsomes (microsomal fractions) from the osteosarcoma cells these precursors revealed apparent molecular masses of 85, 78, 56, 35 and 31 kDa. When osteosarcoma cells were cultured in the presence of warfarin, vitamin K-dependent 14C-labelling of the 78 kDa precursor was enhanced. Selective 14C-labelling of one precursor was also demonstrated in microsomes from HepG2 cells and from rat lung after warfarin treatment. In HepG2 cells this precursor was identified as the precursor of (clotting) Factor X. This unique 14C-labelling pattern of precursors of vitamin K-dependent proteins in microsomes from different cells and tissues reflects a new mechanism underlying the action of warfarin.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8824/1131599/a4c648364ead/biochemj00179-0181-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验