Suppr超能文献

骨骼和软骨锐器伤的微观分析:一项验证研究。

Microscopic analysis of sharp force trauma in bone and cartilage: a validation study.

作者信息

Crowder Christian, Rainwater Christopher W, Fridie Jeannette S

机构信息

Department of Pathology, New York City Office of Chief Medical Examiner, 520 First Avenue, New York, NY, 10016.

Department of Anthropology, Center for the Study of Human Origins, New York University, 25 Waverly Place, New York, NY, 10003.

出版信息

J Forensic Sci. 2013 Sep;58(5):1119-1126. doi: 10.1111/1556-4029.12180. Epub 2013 Jul 18.

Abstract

Sharp force trauma research lacks agreement on reported error rates for correctly identifying toolmark characteristics on bone and cartilage. This study provides error rates for determining blade class (serrated, partially serrated, nonserrated) and type of edge bevel (left, right, even). Three analysts examined cuts to a wax medium, cartilage, and bone using two types of microscopes. Additionally, the observers examined impressions taken from the wax medium and the cartilage. Overall, a total of 504 observations were performed. Serrated blades were distinguishable from nonserrated blades due to their patterned striations. Some difficulties were encountered in distinguishing serrated and partially serrated blades; however, when these groups were considered together as one classification type (serrated), classification accuracy improved from 79% to 96%. Classification accuracy for edge bevel was 65%. Error rates were similar when comparing direct observation of the cut marks versus indirect observation (impressions). Additionally, the type of microscope used did not affect error rates.

摘要

锐器伤研究在正确识别骨骼和软骨上的工具痕迹特征的报告错误率方面缺乏共识。本研究提供了确定刀片类别(锯齿状、部分锯齿状、非锯齿状)和边缘斜面类型(左、右、平)的错误率。三位分析人员使用两种类型的显微镜检查了对蜡介质、软骨和骨骼的切割。此外,观察者检查了从蜡介质和软骨上获取的印记。总体而言,共进行了504次观察。锯齿状刀片因其有图案的条纹而可与非锯齿状刀片区分开来。在区分锯齿状和部分锯齿状刀片时遇到了一些困难;然而,当将这些组作为一种分类类型(锯齿状)一起考虑时,分类准确率从79%提高到了96%。边缘斜面的分类准确率为65%。比较切割痕迹的直接观察与间接观察(印记)时,错误率相似。此外,所使用的显微镜类型不影响错误率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验