Université de Lyon, F-69622 Villeurbanne, France; Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR CNRS 5280, F-69622 Villeurbanne, France.
Chemosphere. 2013 Oct;93(6):1094-103. doi: 10.1016/j.chemosphere.2013.06.002. Epub 2013 Jul 15.
REACH regulation requires ecotoxicological data to characterize industrial chemicals. To limit in vivo testing, Quantitative Structure-Activity Relationships (QSARs) are advocated to predict toxicity of a molecule. In this context, the topic of this work was to develop a reliable QSAR explaining the experimental acute toxicity of organic solvents for fish trophic level. Toxicity was expressed as log(LC50), the concentration in mmol.L(-1) producing the 50% death of fish. The 141 chemically heterogeneous solvents of the dataset were described by physico-chemical descriptors and quantum theoretical parameters calculated via Density Functional Theory. The best subsets of solvent descriptors for LC50 prediction were chosen both through the Kubinyi function associated with Enhanced Replacement Method and a stepwise forward multiple linear regressions. The 4-parameters selected in the model were the octanol-water partition coefficient, LUMO energy, dielectric constant and surface tension. The predictive power and robustness of the QSAR developed were assessed by internal and external validations. Several techniques for training sets selection were evaluated: a random selection, a LC50-based selection, a balanced selection in terms of toxic and non-toxic solvents, a solvent profile-based selection with a space filling technique and a D-optimality onions-based selection. A comparison with fish LC50 predicted by ECOSAR model validated for neutral organics confirmed the interest of the QSAR developed for the prediction of organic solvent aquatic toxicity regardless of the mechanism of toxic action involved.
REACH 法规要求使用生态毒理学数据来描述工业化学品。为了减少体内测试,人们提倡使用定量结构-活性关系 (QSAR) 来预测分子的毒性。在这种情况下,这项工作的主题是开发一种可靠的 QSAR,以解释有机溶剂对鱼类营养级别的急性毒性。毒性用 log(LC50)表示,即导致鱼类 50%死亡的浓度(mmol.L(-1))。数据集包含 141 种化学性质各异的溶剂,通过物理化学描述符和通过密度泛函理论计算的量子理论参数来描述。通过与增强替换方法相关的 Kubinyi 函数和逐步向前多元线性回归,选择了用于 LC50 预测的溶剂描述符最佳子集。模型中选择的 4 个参数是辛醇-水分配系数、最低未占轨道能量、介电常数和表面张力。通过内部和外部验证评估了所开发的 QSAR 的预测能力和稳健性。评估了几种训练集选择技术:随机选择、基于 LC50 的选择、基于有毒和无毒溶剂的平衡选择、基于溶剂分布的空间填充技术选择和基于 D-最优洋葱的选择。与为中性有机物验证的 ECOSAR 模型预测的鱼类 LC50 进行比较,证实了所开发的 QSAR 用于预测有机溶剂的水生毒性的兴趣,无论所涉及的毒性作用机制如何。